Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Exp Mol Med ; 56(2): 461-477, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38409448

RESUMEN

The P53-destabilizing TBC1D15-NOTCH protein interaction promotes self-renewal of tumor-initiating stem-like cells (TICs); however, the mechanisms governing the regulation of this pathway have not been fully elucidated. Here, we show that TBC1D15 stabilizes NOTCH and c-JUN through blockade of E3 ligase and CDK8 recruitment to phosphodegron sequences. Chromatin immunoprecipitation (ChIP-seq) analysis was performed to determine whether TBC1D15-dependent NOTCH1 binding occurs in TICs or non-TICs. The TIC population was isolated to evaluate TBC1D15-dependent NOTCH1 stabilization mechanisms. The tumor incidence in hepatocyte-specific triple knockout (Alb::CreERT2;Tbc1d15Flox/Flox;Notch1Flox/Flox;Notch2Flox/Flox;HCV-NS5A) Transgenic (Tg) mice and wild-type mice was compared after being fed an alcohol-containing Western diet (WD) for 12 months. The NOTCH1-TBC1D15-FIS1 interaction resulted in recruitment of mitochondria to the perinuclear region. TBC1D15 bound to full-length NUMB and to NUMB isoform 5, which lacks three Ser phosphorylation sites, and relocalized NUMB5 to mitochondria. TBC1D15 binding to NOTCH1 blocked CDK8- and CDK19-mediated phosphorylation of the NOTCH1 PEST phosphodegron to block FBW7 recruitment to Thr-2512 of NOTCH1. ChIP-seq analysis revealed that TBC1D15 and NOTCH1 regulated the expression of genes involved in mitochondrial metabolism-related pathways required for the maintenance of TICs. TBC1D15 inhibited CDK8-mediated phosphorylation to stabilize NOTCH1 and protect it from degradation The NUMB-binding oncoprotein TBC1D15 rescued NOTCH1 from NUMB-mediated ubiquitin-dependent degradation and recruited NOTCH1 to the mitochondrial outer membrane for the generation and expansion of liver TICs. A NOTCH-TBC1D15 inhibitor was found to inhibit NOTCH-dependent pathways and exhibited potent therapeutic effects in PDX mouse models. This unique targeting of the NOTCH-TBC1D15 interaction not only normalized the perinuclear localization of mitochondria but also promoted potent cytotoxic effects against TICs to eradicate patient-derived xenografts through NOTCH-dependent pathways.


Asunto(s)
Mitocondrias , Ubiquitina-Proteína Ligasas , Humanos , Animales , Ratones , Ubiquitina-Proteína Ligasas/genética , Membranas Mitocondriales , Fosforilación , Inmunoprecipitación de Cromatina , Modelos Animales de Enfermedad , Proteínas de la Membrana/genética , Proteínas Mitocondriales , Quinasa 8 Dependiente de Ciclina , Proteínas Activadoras de GTPasa , Quinasas Ciclina-Dependientes
2.
Redox Biol ; 70: 103052, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38290384

RESUMEN

Acute liver failure caused by alcoholic hepatitis (AH) is only effectively treated with liver transplantation. Livers of patients with AH show a unique molecular signature characterized by defective hepatocellular redox metabolism, concurrent to hepatic infiltration of neutrophils that express myeloperoxidase (MPO) and form neutrophil extracellular traps (NETs). Exacerbated NET formation and MPO activity contribute to liver damage in mice with AH and predicts poor prognosis in AH patients. The identification of pathways that maladaptively exacerbate neutrophilic activity in liver could inform of novel therapeutic approaches to treat AH. Whether the redox defects of hepatocytes in AH directly exacerbate neutrophilic inflammation and NET formation is unclear. Here we identify that the protein content of the mitochondrial biliverdin exporter ABCB10, which increases hepatocyte-autonomous synthesis of the ROS-scavenger bilirubin, is decreased in livers from humans and mice with AH. Increasing ABCB10 expression selectively in hepatocytes of mice with AH is sufficient to decrease MPO gene expression and histone H3 citrullination, a specific marker of NET formation. These anti-inflammatory effects can be explained by ABCB10 function reducing ROS-mediated actions in liver. Accordingly, ABCB10 gain-of-function selectively increased the mitochondrial GSH/GSSG ratio and decreased hepatic 4-HNE protein adducts, without elevating mitochondrial fat expenditure capacity, nor mitigating steatosis and hepatocyte death. Thus, our study supports that ABCB10 function regulating ROS-mediated actions within surviving hepatocytes mitigates the maladaptive activation of infiltrated neutrophils in AH. Consequently, ABCB10 gain-of-function in human hepatocytes could potentially decrease acute liver failure by decreasing the inflammatory flare caused by excessive neutrophil activity.


Asunto(s)
Hepatitis Alcohólica , Fallo Hepático Agudo , Humanos , Animales , Ratones , Hepatitis Alcohólica/genética , Hepatitis Alcohólica/metabolismo , Biliverdina/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Hepatocitos/metabolismo , Hígado/metabolismo , Inflamación/genética , Inflamación/metabolismo , Histonas/metabolismo , Fallo Hepático Agudo/metabolismo , Transportadoras de Casetes de Unión a ATP/metabolismo
3.
STAR Protoc ; 4(4): 102389, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38103196

RESUMEN

We detail procedures for generating a humanized mouse model of hepatocellular carcinoma (HCC) recapitulating genetic mutations associated with metabolic liver diseases (MLD). We humanized liver parenchymal, non-parenchymal, and hematopoietic cells. We employed CRISPR-Cas9-based ARID1A knockout and constitutively active CTNNB1 knockin combined with an alcohol Western diet to generate cancer-driver mutations commonly found in MLD-HCC patients. This HCC model facilitates the study of tumor-promoting gene-environment interactions. For complete details on the use and execution of this protocol, please refer to Yeh et al.1.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Ratones , Animales , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/patología , Sistemas CRISPR-Cas/genética , Mutación , Modelos Animales de Enfermedad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...