Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Exp Anim ; 73(1): 93-100, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-37661429

RESUMEN

Exocyst is an octameric protein complex implicated in exocytosis. The exocyst complex is highly conserved among mammalian species, but the physiological function of each subunit in exocyst remains unclear. Previously, we identified exocyst complex component 3-like (Exoc3l) as a gene abundantly expressed in embryonic endothelial cells and implicated in the process of angiogenesis in human umbilical cord endothelial cells. Here, to reveal the physiological roles of Exoc3l during development, we generated Exoc3l knockout (KO) mice by genome editing with CRISPR/Cas9. Exoc3l KO mice were viable and showed no significant phenotype in embryonic angiogenesis or postnatal retinal angiogenesis. Exoc3l KO mice also showed no significant alteration in cholesterol homeostasis or insulin secretion, although several reports suggest an association of Exoc3l with these processes. Despite the implied roles, Exoc3l KO mice exhibited no apparent phenotype in vascular development, cholesterol homeostasis, or insulin secretion.


Asunto(s)
Mutación con Pérdida de Función , Proteínas de Transporte Vesicular , Animales , Ratones , Humanos , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo , Células Endoteliales/metabolismo , Secreción de Insulina , Colesterol , Mamíferos/metabolismo
2.
Sci Rep ; 13(1): 15649, 2023 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-37730951

RESUMEN

Familial hypercholesterolemia (FH) is an inherited autosomal dominant disorder that is associated with a high plasma level of low-density lipoprotein (LDL) cholesterol, leading to an increased risk of cardiovascular diseases. To develop basic and translational research on FH, we here generated an FH model in a non-human primate (cynomolgus monkeys) by deleting the LDL receptor (LDLR) gene using the genome editing technique. Six LDLR knockout (KO) monkeys were produced, all of which were confirmed to have mutations in the LDLR gene by sequence analysis. The levels of plasma cholesterol and triglyceride were quite high in the monkeys, and were similar to those in FH patients with homozygous mutations in the LDLR gene. In addition, periocular xanthoma was observed only 1 year after birth. Lipoprotein profile analysis showed that the plasma very low-density lipoprotein and LDL were elevated, while the plasma high density lipoprotein was decreased in LDLR KO monkeys. The LDLR KO monkeys were also strongly resistant to medications for hypercholesterolemia. Taken together, we successfully generated a non-human primate model of hypercholesterolemia in which the phenotype is similar to that of homozygous FH patients.


Asunto(s)
Traumatismos Craneocerebrales , Hipercolesterolemia , Hiperlipoproteinemia Tipo II , Animales , Humanos , Primates , Hiperlipoproteinemia Tipo II/genética , Lipoproteínas LDL , Macaca fascicularis
3.
EMBO J ; 42(9): e112962, 2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-36929479

RESUMEN

Human in vitro oogenesis provides a framework for clarifying the mechanism of human oogenesis. To create its benchmark, it is vital to promote in vitro oogenesis using a model physiologically close to humans. Here, we establish a foundation for in vitro oogenesis in cynomolgus (cy) monkeys (Macaca fascicularis): cy female embryonic stem cells harboring one active and one inactive X chromosome (Xa and Xi, respectively) differentiate robustly into primordial germ cell-like cells, which in xenogeneic reconstituted ovaries develop efficiently into oogonia and, remarkably, further into meiotic oocytes at the zygotene stage. This differentiation entails comprehensive epigenetic reprogramming, including Xi reprogramming, yet Xa and Xi remain epigenetically asymmetric with, as partly observed in vivo, incomplete Xi reactivation. In humans and monkeys, the Xi epigenome in pluripotent stem cells functions as an Xi-reprogramming determinant. We further show that developmental pathway over-activations with suboptimal up-regulation of relevant meiotic genes impede in vitro meiotic progression. Cy in vitro oogenesis exhibits critical homology with the human system, including with respect to bottlenecks, providing a salient model for advancing human in vitro oogenesis.


Asunto(s)
Oocitos , Oogénesis , Animales , Femenino , Humanos , Macaca fascicularis , Oogénesis/fisiología , Ovario , Células Madre Embrionarias
4.
Life (Basel) ; 12(11)2022 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-36362885

RESUMEN

Angiogenesis is a process to generate new blood vessels from pre-existing vessels and to maintain vessels, and plays critical roles in normal development and disease. However, the molecular mechanisms underlying angiogenesis are not fully understood. This study examined the roles of exocyst complex component (Exoc) 3-like 2 (Exoc3l2) during development in mice. We found that Exoc3l1, Exoc3l2, Exoc3l3 and Exoc3l4 are expressed abundantly in endothelial cells at embryonic day 8.5. The generation of Exoc3l2 knock-out (KO) mice showed that disruption of Exoc3l2 resulted in lethal in utero. Substantial numbers of Exoc3l2 KO embryos exhibited hemorrhaging. Deletion of Exoc3l2 using Tie2-Cre transgenic mice demonstrated that Exoc3l2 in hematopoietic and endothelial lineages was responsible for the phenotype. Taken together, these findings reveal that Exoc3l2 is essential for cardiovascular and brain development in mice.

5.
Sci Rep ; 12(1): 16030, 2022 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-36163369

RESUMEN

Genetic mutations in fused in sarcoma (FUS) cause amyotrophic lateral sclerosis (ALS). Although mitochondrial dysfunction and stress granule have been crucially implicated in FUS proteinopathy, the molecular basis remains unclear. Here, we show that DHX30, a component of mitochondrial RNA granules required for mitochondrial ribosome assembly, interacts with FUS, and plays a crucial role in ALS-FUS. WT FUS did not affect mitochondrial localization of DHX30, but the mutant FUS lowered the signal of mitochondrial DHX30 and promoted the colocalization of cytosolic FUS aggregates and stress granule markers. The immunohistochemistry of the spinal cord from an ALS-FUS patient also confirmed the colocalization, and the immunoelectron microscope demonstrated decreased mitochondrial DHX30 signal in the spinal motor neurons. Subcellular fractionation by the detergent-solubility and density-gradient ultracentrifugation revealed that mutant FUS also promoted cytosolic mislocalization of DHX30 and aggregate formation. Interestingly, the mutant FUS disrupted the DHX30 conformation with aberrant disulfide formation, leading to impaired mitochondrial translation. Moreover, blue-native gel electrophoresis revealed an OXPHOS assembly defect caused by the FUS mutant, which was similar to that caused by DHX30 knockdown. Collectively, our study proposes DHX30 as a pivotal molecule in which disulfide-mediated conformational change mediates mitochondrial dysfunction and cytosolic aggregate formation in ALS-FUS.


Asunto(s)
Esclerosis Amiotrófica Lateral , Demencia Frontotemporal , Esclerosis Amiotrófica Lateral/genética , Detergentes , Disulfuros , Humanos , Mitocondrias/genética , Mutación , ARN , ARN Helicasas/genética , Proteína FUS de Unión a ARN/química , Proteína FUS de Unión a ARN/genética
6.
EMBO J ; 41(18): e110815, 2022 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-35912849

RESUMEN

In vitro oogenesis is key to elucidating the mechanism of human female germ-cell development and its anomalies. Accordingly, pluripotent stem cells have been induced into primordial germ cell-like cells and into oogonia with epigenetic reprogramming, yet further reconstitutions remain a challenge. Here, we demonstrate ex vivo reconstitution of fetal oocyte development in both humans and cynomolgus monkeys (Macaca fascicularis). With an optimized culture of fetal ovary reaggregates over three months, human and monkey oogonia enter and complete the first meiotic prophase to differentiate into diplotene oocytes that form primordial follicles, the source for oogenesis in adults. The cytological and transcriptomic progressions of fetal oocyte development in vitro closely recapitulate those in vivo. A comparison of single-cell transcriptomes among humans, monkeys, and mice unravels primate-specific and conserved programs driving fetal oocyte development, the former including a distinct transcriptomic transformation upon oogonia-to-oocyte transition and the latter including two active X chromosomes with little X-chromosome upregulation. Our study provides a critical step forward for realizing human in vitro oogenesis and uncovers salient characteristics of fetal oocyte development in primates.


Asunto(s)
Meiosis , Oogénesis , Animales , Femenino , Humanos , Macaca fascicularis , Ratones , Oocitos , Oogénesis/fisiología , Ovario
7.
Sci Data ; 8(1): 159, 2021 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-34183680

RESUMEN

Cynomolgus macaque (Macaca fascicularis) and common marmoset (Callithrix jacchus) have been widely used in human biomedical research. Long-standing primate genome assemblies used the human genome as a reference for ordering and orienting the assembled fragments into chromosomes. Here we performed de novo genome assembly of these two species without any human genome-based bias observed in the genome assemblies released earlier. We assembled PacBio long reads, and the resultant contigs were scaffolded with Hi-C data, which were further refined based on Hi-C contact maps and alternate de novo assemblies. The assemblies achieved scaffold N50 lengths of 149 Mb and 137 Mb for cynomolgus macaque and common marmoset, respectively. The high fidelity of our assembly is also ascertained by BAC-end concordance in common marmoset. Our assembly of cynomolgus macaque outperformed all the available assemblies of this species in terms of contiguity. The chromosome-scale genome assemblies produced in this study are valuable resources for non-human primate models and provide an important baseline in human biomedical research.


Asunto(s)
Callithrix/genética , Mapeo Contig , Macaca fascicularis/genética , Animales , Cromosomas , Orden Génico
8.
Stem Cell Reports ; 16(5): 1093-1103, 2021 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-33979596

RESUMEN

Human development has been studied for over a century, but the molecular mechanisms underlying human embryogenesis remain largely unknown due to technical difficulties and ethical issues. Accordingly, mice have been used as a model for mammalian development and studied extensively to infer human biology based on the conservation of fundamental processes between the two species. As research has progressed, however, species-specific differences in characteristics between rodents and primates have become apparent. Non-human primates (NHPs) have also been used for biomedical research, and are now attracting attention as a model for human development. Here, we summarize primate species from the evolutionary and genomic points of view. Then we review the current issues and progress in gene modification technology for NHPs. Finally, we discuss recent studies on the early embryogenesis of primates and future perspectives.


Asunto(s)
Desarrollo Embrionario , Modelos Biológicos , Primates/embriología , Animales , Evolución Biológica , Investigación Biomédica , Células Germinativas/citología , Humanos
9.
Life Sci Alliance ; 4(5)2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33608411

RESUMEN

The in vitro reconstitution of human germ-cell development provides a robust framework for clarifying key underlying mechanisms. Here, we explored transcription factors (TFs) that engender the germ-cell fate in their pluripotent precursors. Unexpectedly, SOX17, TFAP2C, and BLIMP1, which act under the BMP signaling and are indispensable for human primordial germ-cell-like cell (hPGCLC) specification, failed to induce hPGCLCs. In contrast, GATA3 or GATA2, immediate BMP effectors, combined with SOX17 and TFAP2C, generated hPGCLCs. GATA3/GATA2 knockouts dose-dependently impaired BMP-induced hPGCLC specification, whereas GATA3/GATA2 expression remained unaffected in SOX17, TFAP2C, or BLIMP1 knockouts. In cynomolgus monkeys, a key model for human development, GATA3, SOX17, and TFAP2C were co-expressed exclusively in early PGCs. Crucially, the TF-induced hPGCLCs acquired a hallmark of bona fide hPGCs to undergo epigenetic reprogramming and mature into oogonia/gonocytes in xenogeneic reconstituted ovaries. By uncovering a TF circuitry driving the germ line program, our study provides a paradigm for TF-based human gametogenesis.


Asunto(s)
Células Germinativas/metabolismo , Factores de Transcripción SOXF/metabolismo , Factor de Transcripción AP-2/metabolismo , Animales , Diferenciación Celular/genética , Linaje de la Célula/genética , Femenino , Factores de Transcripción GATA/genética , Factores de Transcripción GATA/metabolismo , Células Germinativas/fisiología , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Macaca fascicularis , Ratones , Ratones Endogámicos ICR , Factores de Transcripción SOXF/genética , Transducción de Señal/genética , Factor de Transcripción AP-2/genética , Factores de Transcripción/metabolismo
10.
J Alzheimers Dis ; 75(1): 45-60, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32250299

RESUMEN

Alzheimer's disease (AD) is the most common cause of dementia and understanding its pathogenesis should lead to improved therapeutic and diagnostic methods. Although several groups have developed transgenic mouse models overexpressing the human amyloid-ß precursor protein (APP) gene with AD mutations, with and without presenilin mutations, as well as APP gene knock-in mouse models, these animals display amyloid pathology but do not show neurofibrillary tangles or neuronal loss. This presumably is due to differences between the etiology of the aged-related human disease and the mouse models. Here we report the generation of two transgenic cynomolgus monkeys overexpressing the human gene for APP with Swedish, Artic, and Iberian mutations, and demonstrated expression of gene tagged green fluorescent protein marker in the placenta, amnion, hair follicles, and peripheral blood. We believe that these nonhuman primate models will be very useful to study the pathogenesis of dementia and AD. However, generated Tg monkeys still have some limitations. We employed the CAG promoter, which will promote gene expression in a non-tissue specific manner. Moreover, we used transgenic models but not knock-in models. Thus, the inserted transgene destroys endogenous gene(s) and may affect the phenotype(s). Nevertheless, it will be of great interest to determine whether these Tg monkeys will develop tauopathy and neurodegeneration similar to human AD.


Asunto(s)
Precursor de Proteína beta-Amiloide/genética , Encéfalo/metabolismo , Macaca fascicularis/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Animales Modificados Genéticamente , Modelos Animales de Enfermedad , Regiones Promotoras Genéticas
11.
Biol Reprod ; 102(3): 620-638, 2020 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-31724030

RESUMEN

In vitro reconstitution of germ-cell development from pluripotent stem cells (PSCs) has created key opportunities to explore the fundamental mechanisms underlying germ-cell development, particularly in mice and humans. Importantly, such investigations have clarified critical species differences in the mechanisms regulating mouse and human germ-cell development, highlighting the necessity of establishing an in vitro germ-cell development system in other mammals, such as non-human primates. Here, we show that multiple lines of embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) in cynomolgus monkeys (Macaca fascicularis; cy) can be maintained stably in an undifferentiated state under a defined condition with an inhibitor for WNT signaling, and such PSCs are induced efficiently into primordial germ cell-like cells (PGCLCs) bearing a transcriptome similar to early cyPGCs. Interestingly, the induction kinetics of cyPGCLCs from cyPSCs is faster than that of human (h) PGCLCs from hPSCs, and while the transcriptome dynamics during cyPGCLC induction is relatively similar to that during hPGCLC induction, it is substantially divergent from that during mouse (m) PGCLC induction. Our findings delineate common as well as species-specific traits for PGC specification, creating a foundation for parallel investigations into the mechanism for germ-cell development in mice, monkeys, and humans.


Asunto(s)
Diferenciación Celular/fisiología , Células Madre Pluripotentes/citología , Animales , Células Madre Pluripotentes Inducidas/citología , Macaca fascicularis , Transcriptoma
12.
Nat Commun ; 10(1): 5517, 2019 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-31822676

RESUMEN

Autosomal dominant polycystic kidney disease (ADPKD) caused by PKD1 mutations is one of the most common hereditary disorders. However, the key pathological processes underlying cyst development and exacerbation in pre-symptomatic stages remain unknown, because rodent models do not recapitulate critical disease phenotypes, including disease onset in heterozygotes. Here, using CRISPR/Cas9, we generate ADPKD models with PKD1 mutations in cynomolgus monkeys. As in humans and mice, near-complete PKD1 depletion induces severe cyst formation mainly in collecting ducts. Importantly, unlike in mice, PKD1 heterozygote monkeys exhibit cyst formation perinatally in distal tubules, possibly reflecting the initial pathology in humans. Many monkeys in these models survive after cyst formation, and cysts progress with age. Furthermore, we succeed in generating selective heterozygous mutations using allele-specific targeting. We propose that our models elucidate the onset and progression of ADPKD, which will serve as a critical basis for establishing new therapeutic strategies, including drug treatments.


Asunto(s)
Macaca fascicularis , Riñón Poliquístico Autosómico Dominante/genética , Canales Catiónicos TRPP/genética , Alelos , Animales , Modelos Animales de Enfermedad , Femenino , Heterocigoto , Humanos , Riñón/metabolismo , Riñón/patología , Macaca fascicularis/genética , Macaca fascicularis/metabolismo , Masculino , Mutación , Riñón Poliquístico Autosómico Dominante/metabolismo , Riñón Poliquístico Autosómico Dominante/patología , Canales Catiónicos TRPP/metabolismo
13.
Stem Cell Res ; 37: 101439, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-31005787

RESUMEN

Cynomolgus monkey ES (Cyn ES) cells can be generated in a similar manner as human ES cells. However, Cyn ES cells are difficult to maintain in an undifferentiated state by untrained researchers. For easier culture, we generated an OCT3/4-P2A tdTomato IRES ZeocinR Cyn ES cell line using CRISPR/Cas9 genome editing technology. The stop codon of the endogenous OCT3/4 locus was replaced with the P2A tdTomato IRES ZeocinR pA cassette by homologous recombination. This cell line enables us to isolate pluripotent stem cells and exclude differentiated cells by addition of zeocin, especially for culture without feeder cells.


Asunto(s)
Sistemas CRISPR-Cas , Diferenciación Celular , Separación Celular/métodos , Células Madre Embrionarias/citología , Edición Génica , Células Madre Pluripotentes Inducidas/citología , Factor 3 de Transcripción de Unión a Octámeros/genética , Animales , Células Cultivadas , Células Madre Embrionarias/metabolismo , Células Nutrientes , Recombinación Homóloga , Células Madre Pluripotentes Inducidas/metabolismo , Macaca fascicularis , Factor 3 de Transcripción de Unión a Octámeros/antagonistas & inhibidores
14.
Biol Reprod ; 100(6): 1440-1452, 2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-30869744

RESUMEN

Nonhuman primates (NHPs) are considered to be the most valuable models for human transgenic (Tg) research into disease because human pathology is more closely recapitulated in NHPs than rodents. Previous studies have reported the generation of Tg NHPs that ubiquitously overexpress a transgene using various promoters, but it is not yet clear which promoter is most suitable for the generation of NHPs overexpressing a transgene ubiquitously and persistently in various tissues. To clarify this issue, we evaluated four putative ubiquitous promoters, cytomegalovirus (CMV) immediate-early enhancer and chicken beta-actin (CAG), elongation factor 1α (EF1α), ubiquitin C (UbC), and CMV, using an in vitro differentiation system of cynomolgus monkey embryonic stem cells (ESCs). While the EF1α promoter drove Tg expression more strongly than the other promoters in undifferentiated pluripotent ESCs, the CAG promoter was more effective in differentiated cells such as embryoid bodies and ESC-derived neurons. When the CAG and EF1α promoters were used to generate green fluorescent protein (GFP)-expressing Tg monkeys, the CAG promoter drove GFP expression in skin and hematopoietic tissues more strongly than in ΕF1α-GFP Tg monkeys. Notably, the EF1α promoter underwent more silencing in both ESCs and Tg monkeys. Thus, the CAG promoter appears to be the most suitable for ubiquitous and stable expression of transgenes in the differentiated tissues of Tg cynomolgus monkeys and appropriate for the establishment of human disease models.


Asunto(s)
Animales Modificados Genéticamente , Vectores Genéticos , Macaca fascicularis/genética , Regiones Promotoras Genéticas , Transgenes , Actinas/genética , Animales , Antígenos Virales/genética , Células Cultivadas , Pollos/genética , Clonación de Organismos/métodos , Clonación de Organismos/normas , Células Madre Embrionarias/citología , Células Madre Embrionarias/fisiología , Elementos de Facilitación Genéticos/genética , Femenino , Técnicas de Transferencia de Gen/normas , Vectores Genéticos/genética , Proteínas Inmediatas-Precoces/genética , Masculino , Ratones , Factor 1 de Elongación Peptídica/genética
15.
PLoS One ; 14(1): e0210060, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30601868

RESUMEN

Vascular endothelial growth factor receptor 3 (Vegfr3) has been widely used as a marker for lymphatic and vascular endothelial cells during mouse embryonic development and in adult mouse, making it valuable for studying angiogenesis and lymphangiogenesis under normal and pathological conditions. Here, we report the generation of a novel transgenic (Tg) mouse that expresses a membrane-localized fluorescent reporter protein, Gap43-Venus, under the control of the Vegfr3 regulatory sequence. Vegfr3-Gap43-Venus BAC Tg recapitulated endogenous Vegfr3 expression in vascular and lymphatic endothelial cells during embryonic development and tumor development. Thus, this Tg mouse line contributes a valuable model to study angiogenesis and lymphangiogenesis in physiological and pathological contexts.


Asunto(s)
Proteínas Bacterianas/metabolismo , Células Endoteliales/metabolismo , Proteína GAP-43/metabolismo , Proteínas Luminiscentes/metabolismo , Receptor 3 de Factores de Crecimiento Endotelial Vascular/metabolismo , Animales , Proteínas Bacterianas/genética , Vasos Sanguíneos/metabolismo , Línea Celular Tumoral , Membrana Celular/metabolismo , Embrión de Mamíferos/irrigación sanguínea , Embrión de Mamíferos/citología , Embrión de Mamíferos/metabolismo , Femenino , Proteína GAP-43/genética , Expresión Génica , Proteínas Luminiscentes/genética , Vasos Linfáticos/citología , Vasos Linfáticos/metabolismo , Ratones Endogámicos C57BL , Ratones Endogámicos ICR , Ratones Transgénicos , Microscopía Confocal , Neoplasias Experimentales/irrigación sanguínea , Neoplasias Experimentales/genética , Neoplasias Experimentales/metabolismo , Neovascularización Patológica/genética , Neovascularización Patológica/metabolismo , Receptor 3 de Factores de Crecimiento Endotelial Vascular/genética
16.
Sci Adv ; 3(5): e1602179, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28508054

RESUMEN

In mammals, the Y chromosome strictly influences the maintenance of male germ cells. Almost all mammalian species require genetic contributors to generate testes. An endangered species, Tokudaia osimensis, has a unique sex chromosome composition XO/XO, and genetic differences between males and females have not been confirmed. Although a distinctive sex-determining mechanism may exist in T. osimensis, it has been difficult to examine thoroughly in this rare animal species. To elucidate the discriminative sex-determining mechanism in T. osimensis and to find a strategy to prevent its possible extinction, we have established induced pluripotent stem cells (iPSCs) and derived interspecific chimeras using mice as the hosts and recipients. Generated iPSCs are considered to be in the so-called "true naïve" state, and T. osimensis iPSCs may contribute as interspecific chimeras to several different tissues and cells in live animals. Surprisingly, female T. osimensis iPSCs not only contributed to the female germ line in the interspecific mouse ovary but also differentiated into spermatocytes and spermatids that survived in the adult interspecific mouse testes. Thus, T. osimensis cells have high sexual plasticity through which female somatic cells can be converted to male germline cells. These findings suggest flexibility in T. osimensis cells, which can adapt their germ cell sex to the gonadal niche. The probable reduction of the extinction risk of an endangered species through the use of iPSCs is indicated by this study.


Asunto(s)
Cromosomas de los Mamíferos , Especies en Peligro de Extinción , Células Germinativas/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Murinae , Procesos de Determinación del Sexo/genética , Testículo/metabolismo , Cromosoma X , Animales , Cromosomas de los Mamíferos/genética , Cromosomas de los Mamíferos/metabolismo , Femenino , Células Germinativas/citología , Masculino , Murinae/genética , Murinae/metabolismo , Testículo/citología , Cromosoma X/genética , Cromosoma X/metabolismo
17.
PLoS One ; 11(12): e0167550, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27907214

RESUMEN

Trophectoderm lineage specification is one of the earliest differentiation events in mammalian development. The trophoblast lineage, which is derived from the trophectoderm, mediates implantation and placental formation. However, the processes involved in trophoblastic differentiation and placental formation in cattle remain unclear due to interspecies differences when compared with other model systems and the small repertoire of available trophoblast cell lines. Here, we describe the generation of trophoblast cell lines (biTBCs) from bovine amnion-derived cells (bADCs) using an induced pluripotent stem cell technique. bADCs were introduced with piggyBac vectors containing doxycycline (Dox)-inducible transcription factors (Oct3/4(POU5F1), Sox2, Klf4, and c-Myc). Colonies that appeared showed a flattened epithelial-like morphology similar to cobblestones, had a more definite cell boundary between cells, and frequently formed balloon-like spheroids similar to trophoblastic vesicles (TVs). biTBCs were propagated for over 60 passages and expressed trophoblast-related (CDX2, ELF5, ERRß, and IFN-τ) and pluripotency-related genes (endogenous OCT3/4, SOX2, KLF4, and c-MYC). Furthermore, when biTBCs were induced to differentiate by removing Dox from culture, they formed binucleate cells and began to express pregnancy-related genes (PL, PRP1, and PAG1). This is the first report demonstrating that the induction of pluripotency in bovine amniotic cells allows the generation of trophoblastic cell lines that possess trophoblast stem cell-like characteristics and have the potential to differentiate into the extra-embryonic cell lineage. These cell lines can be a new cell source as a model for studying trophoblast cell lineages and implantation processes in cattle.


Asunto(s)
Amnios/citología , Ectodermo/citología , Efecto Fundador , Vectores Genéticos/química , Células Madre Pluripotentes Inducidas/citología , Trofoblastos/citología , Amnios/efectos de los fármacos , Amnios/metabolismo , Animales , Biomarcadores/metabolismo , Bovinos , Línea Celular , Linaje de la Célula/efectos de los fármacos , Doxiciclina/farmacología , Ectodermo/efectos de los fármacos , Ectodermo/metabolismo , Femenino , Expresión Génica , Vectores Genéticos/metabolismo , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Células Madre Pluripotentes Inducidas/metabolismo , Factor 4 Similar a Kruppel , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , Factor 3 de Transcripción de Unión a Octámeros/genética , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Embarazo , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Factores de Transcripción SOXB1/genética , Factores de Transcripción SOXB1/metabolismo , Trofoblastos/efectos de los fármacos , Trofoblastos/metabolismo
18.
PLoS One ; 11(7): e0159246, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27409080

RESUMEN

Fibroblast growth factor 5 (Fgf5) has been widely used as a marker for the epiblast in the postimplantation embryo and epiblast stem cells (mEpiSCs) in the mouse, making it valuable for study of differentiation of various tissues and epiblast cells in vivo and in vitro. Here, we report for the first time the generation of Fgf5-P2A-Venus BAC transgenic (Tg) mice and show that the BAC Tg can recapitulate endogenous Fgf5 expression in epiblast and visceral endodermal cells of E6.5 and 7.5 embryos. We also show that Fgf5-P2A-Venus BAC Tg mEpiSCs in the undifferentiated state expressed abundant Venus, and upon reprogramming into naïve state, Venus was suppressed. Furthermore, while most Tg mEpiSCs expressed Venus abundantly, surprisingly the Tg mEpiSCs contained a minor subpopulation of Venus-negative cells that were capable of conversion to Venus-positive cells, indicating that even Fgf5 expression shows dynamic heterogeneity in mEpiSCs. Taken together, Fgf5-P2A-Venus BAC Tg mice and mEpiSCs generated in this study will be useful for developmental biology as well as stem cell biology research.


Asunto(s)
Reprogramación Celular/genética , Cromosomas Artificiales Bacterianos/genética , Células Madre Embrionarias/citología , Endodermo/citología , Factor 5 de Crecimiento de Fibroblastos/genética , Animales , Proteínas Bacterianas/genética , Diferenciación Celular , Células Cultivadas , Proteínas Luminiscentes/genética , Ratones , Ratones Transgénicos
19.
Sci Rep ; 6: 24868, 2016 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-27109065

RESUMEN

Nonhuman primates are valuable for human disease modelling, because rodents poorly recapitulate some human diseases such as Parkinson's disease and Alzheimer's disease amongst others. Here, we report for the first time, the generation of green fluorescent protein (GFP) transgenic cynomolgus monkeys by lentivirus infection. Our data show that the use of a human cytomegalovirus immediate-early enhancer and chicken beta actin promoter (CAG) directed the ubiquitous expression of the transgene in cynomolgus monkeys. We also found that injection into mature oocytes before fertilization achieved homogenous expression of GFP in each tissue, including the amnion, and fibroblasts, whereas injection into fertilized oocytes generated a transgenic cynomolgus monkey with mosaic GFP expression. Thus, the injection timing was important to create transgenic cynomolgus monkeys that expressed GFP homogenously in each of the various tissues. The strategy established in this work will be useful for the generation of transgenic cynomolgus monkeys for transplantation studies as well as biomedical research.


Asunto(s)
Animales Modificados Genéticamente , Proteínas Fluorescentes Verdes/biosíntesis , Macaca fascicularis/genética , Animales , Pollos/genética , Citomegalovirus/genética , Expresión Génica , Proteínas Fluorescentes Verdes/genética , Humanos , Lentivirus/genética , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/genética
20.
PLoS One ; 10(8): e0135403, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26287611

RESUMEN

Generation of pluripotent stem cells (PSCs) in large domestic animals has achieved only limited success; most of the PSCs obtained to date have been classified as primed PSCs, which possess very little capacity to produce chimeric offspring. By contrast, mouse PSCs have been classified as naïve PSCs that can contribute to most of the tissues of chimeras, including germ cells. Here, we describe the generation of two different types of bovine induced pluripotent stem cells (biPSCs) from amnion cells, achieved through introduction of piggyBac vectors containing doxycycline-inducible transcription factors (Oct3/4, Sox2, Klf4, and c-Myc). One type of biPSCs, cultured in medium supplemented with knockout serum replacement (KSR), FGF2, and bovine leukemia inhibitory factor (bLIF), had a flattened morphology like human PSCs; these were classified as primed-type. The other type biPSCs, cultured in KSR, bLIF, Mek/Erk inhibitor, GSK3 inhibitor and forskolin, had a compact morphology like mouse PSCs; these were classified as naïve-type. Cells could easily be switched between these two types of biPSCs by changing the culture conditions. Both types of biPSCs had strong alkaline phosphatase activity, expressed pluripotent markers (OCT3/4, NANOG, REX1, ESRRß, STELLA, and SOCS3), and formed embryoid bodies that gave rise to differentiated cells from all three embryonic germ layers. However, only naïve-type biPSCs showed the hallmarks of naïve mouse PSCs, such as LIF-dependent proliferation, lack of FGF5 expression, and active XIST expression with two active X chromosomes. Furthermore, naïve-type biPSCs could contribute to the inner cell mass (ICM) of host blastocysts and most tissues within chimeric embryos. This is the first report of generation of biPSCs with several characteristics similar to those of naïve mouse PSCs and a demonstrated potential to contribute to chimeras.


Asunto(s)
Amnios/citología , Reprogramación Celular , Embrión de Mamíferos/embriología , Células Madre Pluripotentes Inducidas/citología , Factores de Transcripción/genética , Animales , Bovinos , Diferenciación Celular , Células Cultivadas , Quimera/genética , Doxiciclina/farmacología , Factor 2 de Crecimiento de Fibroblastos/farmacología , Marcadores Genéticos/genética , Factor 4 Similar a Kruppel , Factores de Transcripción de Tipo Kruppel/genética , Factor Inhibidor de Leucemia/farmacología , Factor 3 de Transcripción de Unión a Octámeros/genética , Proteínas Proto-Oncogénicas c-myc/genética , Factores de Transcripción SOXB1/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA