Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Adv Sci (Weinh) ; 10(19): e2301876, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37096836

RESUMEN

Determination of a reaction pathway is an important issue for the optimization of reactions. However, reactions in solid-state compounds have remained poorly understood because of their complexity and technical limitations. Here, using state-of-the-art high-speed time-resolved synchrotron X-ray techniques, the topochemical solid-gas reduction mechanisms in layered perovskite Sr3 Fe2 O7- δ (from δ ∼ 0.4 to δ = 1.0), which is promising for an environmental catalyst material is revealed. Pristine Sr3 Fe2 O7- δ shows a gradual single-phase structural evolution during reduction, indicating that the reaction continuously proceeds through thermodynamically stable phases. In contrast, a nonequilibrium dynamically-disordered phase emerges a few seconds before a first-order transition during the reduction of a Pd-loaded sample. This drastic change in the reaction pathway can be explained by a change in the rate-determining step. The synchrotron X-ray technique can be applied to various solid-gas reactions and provides an opportunity for gaining a better understanding and optimizing reactions in solid-state compounds.

2.
J Am Chem Soc ; 144(36): 16572-16578, 2022 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-36049089

RESUMEN

p-Type doping in Cu(I)-based semiconductors is pivotal for solar cell photoabsorbers and hole transport materials to improve the device performance. Impurity doping is a fundamental technology to overcome the intrinsic limits of hole concentration controlled by native defects. Here, we report that alkali metal impurities are prominent p-type dopants for the Cu(I)-based cation-deficient hole conductors. When the size mismatch with Cu+ in the host lattice is increased, these isovalent impurities are preferentially located at interstitial positions to interact with the constituent Cu cations, forming stable impurity-defect complexes. We demonstrate that the Cs impurity in γ-CuI semiconductors enhances hole concentration controllability for single crystals and thin films in the range of 1013-1019 cm-3. First-principles calculations indicate that the Cs impurity forms impurity-defect complexes that act as shallow acceptors leading to the increased p-type conductivity. This isovalent doping provides an approach for controlled doping into cation-deficient semiconductors through an interaction of impurities with native defects.

3.
RSC Adv ; 12(34): 21940-21945, 2022 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-36043076

RESUMEN

A joint experimental and theoretical study is presented to reveal the influence of nitrogen doping on the optical and electrical properties of NiO thin films. Nitrogen addition can significantly enhance the subgap absorption. The molecular state of nitrogen (N2) has been identified in these doped thin films by electron energy loss spectroscopy.

5.
Inorg Chem ; 58(21): 14830-14841, 2019 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-31638779

RESUMEN

Y2MnGa(Mn4-xGax)O12 solid solutions were synthesized at high pressure of ∼6 GPa and high temperature of ∼1570 K for the 0 ≤ x ≤ 3 compositional range. Synchrotron X-ray and neutron powder diffraction were used to study the crystal structures and cation distributions. These solutions adopt the parent structure of the A-site columnar-ordered quadruple perovskite family with space group P42/nmc (No. 137). They have lattice parameters of a = 7.36095 Å and c = 7.753 84 Å (x = 0), a = 7.361 68 Å and c = 7.716 16 Å (x = 1), a = 7.360 34 Å and c = 7.67142 Å (x = 2), and a = 7.363 93 Å and c = 7.616 85 Å (x = 3) at room temperature. The x = 0 sample has a cation distribution of [Y3+2]A[Mn3+]A'[Ga3+0.68Mn2+0.32]A″[Mn3.68Ga0.32]BO12 with a preferred localization of Ga3+ in the tetrahedral A″ site and with a small amount of Ga3+ in the octahedral B site. A complete triple A-site order, [Y3+2]A[Mn3+]A'[Ga3+]A″[Mn3+4-xGa3+x]BO12, is realized for x ≥ 1. All samples demonstrate spin-glass-like magnetic properties, and the absence of a long-range magnetic order at the ground state at 1.5 K was confirmed by neutron diffraction for the x = 1 sample. First-principles calculations indicated the spin-glass-like magnetic ordering is derived from the Ga substitution to the B sites and gave evidence that the ideal cation distribution could produce robust ferromagnetism in this family of perovskites.

6.
J Am Chem Soc ; 141(2): 890-900, 2019 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-30612429

RESUMEN

Aerobic oxidation of 5-hydroxymethylfurfural (HMF) to 2,5-furandicarboxylic acid (FDCA) as a bioplastics monomer is efficiently promoted by a simple system based on a nonprecious-metal catalyst of MnO2 and NaHCO3. Kinetic studies indicate that the oxidation of 5-formyl-2-furancarboxylic acid (FFCA) to FDCA is the slowest step for the aerobic oxidation of HMF to FDCA over activated MnO2. We demonstrate through combined computational and experimental studies that HMF oxidation to FDCA is largely dependent on the MnO2 crystal structure. Density functional theory (DFT) calculations reveal that vacancy formation energies at the planar oxygen sites in α- and γ-MnO2 are higher than those at the bent oxygen sites. ß- and λ-MnO2 consist of only planar and bent oxygen sites, respectively, with lower vacancy formation energies. Consequently, ß- and λ-MnO2 are likely to be good candidates as oxidation catalysts. On the other hand, experimental studies reveal that the reaction rates per surface area for the slowest step (FFCA oxidation to FDCA) decrease in the order of ß-MnO2 > λ-MnO2 > γ-MnO2 ≈ α-MnO2 > δ-MnO2 > ε-MnO2; the catalytic activity of ß-MnO2 exceeds that of the previously reported activated MnO2 by three times. The order is in good agreement not only with the DFT calculation results, but also with the reduction rates per surface area determined by the H2-temperature-programmed reduction measurements for MnO2 catalysts. The successful synthesis of high-surface-area ß-MnO2 significantly improves the catalytic activity for the aerobic oxidation of HMF to FDCA.


Asunto(s)
Ácidos Dicarboxílicos/síntesis química , Furaldehído/análogos & derivados , Furanos/síntesis química , Compuestos de Manganeso/química , Óxidos/química , Catálisis , Teoría Funcional de la Densidad , Furaldehído/química , Modelos Químicos , Oxidación-Reducción , Oxígeno/química , Bicarbonato de Sodio/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...