Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 2843, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38565573

RESUMEN

Glycolysis is a fundamental cellular process, yet its regulatory mechanisms remain incompletely understood. Here, we show that a subset of glucose transporter 1 (GLUT1/SLC2A1) co-endocytoses with platelet-derived growth factor (PDGF) receptor (PDGFR) upon PDGF-stimulation. Furthermore, multiple glycolytic enzymes localize to these endocytosed PDGFR/GLUT1-containing vesicles adjacent to mitochondria. Contrary to current models, which emphasize the importance of glucose transporters on the cell surface, we find that PDGF-stimulated glucose uptake depends on receptor/transporter endocytosis. Our results suggest that growth factors generate glucose-loaded endocytic vesicles that deliver glucose to the glycolytic machinery in proximity to mitochondria, and argue for a new layer of regulation for glycolytic control governed by cellular membrane dynamics.


Asunto(s)
Glucosa , Factor de Crecimiento Derivado de Plaquetas , Transportador de Glucosa de Tipo 1/metabolismo , Factor de Crecimiento Derivado de Plaquetas/metabolismo , Membrana Celular/metabolismo , Glucosa/metabolismo , Vesículas Transportadoras/metabolismo
2.
Commun Biol ; 6(1): 1060, 2023 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-37857700

RESUMEN

Selenoprotein P (SeP) is a major selenoprotein in serum predominantly produced in the liver. Excess SeP impairs insulin secretion from the pancreas and insulin sensitivity in skeletal muscle, thus inhibition of SeP could be a therapeutic strategy for type 2 diabetes. In this study, we examine the effect of sulforaphane (SFN), a phytochemical of broccoli sprouts and an Nrf2 activator, on SeP expression in vitro and in vivo. Treatment of HepG2 cells with SFN decreases inter- and intra-cellular SeP levels. SFN enhances lysosomal acidification and expression of V-ATPase, and inhibition of this process cancels the decrease of SeP by SFN. SFN activates Nrf2 in the cells, while Nrf2 siRNA does not affect the decrease of SeP by SFN or lysosomal acidification. These results indicate that SFN decreases SeP by enhancing lysosomal degradation, independent of Nrf2. Injection of SFN to mice results in induction of cathepsin and a decrease of SeP in serum. The findings from this study are expected to contribute to developing SeP inhibitors in the future, thereby contributing to treating and preventing diseases related to increased SeP.


Asunto(s)
Diabetes Mellitus Tipo 2 , Factor 2 Relacionado con NF-E2 , Ratones , Animales , Factor 2 Relacionado con NF-E2/metabolismo , Selenoproteína P , Lisosomas/metabolismo
3.
bioRxiv ; 2023 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-37546742

RESUMEN

Glycolysis is a fundamental cellular process, yet its regulatory mechanisms remain incompletely understood. Here, we show that a subset of glucose transporter 1 (GLUT1/SLC2A1) co-endocytoses with platelet-derived growth factor (PDGF) receptor (PDGFR) upon PDGF-stimulation. Furthermore, multiple glycolytic enzymes localize to these endocytosed PDGFR/GLUT1-containing vesicles adjacent to mitochondria. Contrary to current models, which emphasize the importance of glucose transporters on the cell surface, we find that PDGF-stimulated glucose uptake depends on receptor/transporter endocytosis. Our results suggest that growth factors generate glucose-loaded endocytic vesicles that deliver glucose to the glycolytic machinery in proximity to mitochondria, and argue for a new layer of regulation for glycolytic control governed by cellular membrane dynamics.

4.
J Biol Chem ; 299(8): 105009, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37406814

RESUMEN

Selenoprotein P (SeP, encoded by the SELENOP gene) is a plasma protein that contains selenium in the form of selenocysteine residues (Sec, a cysteine analog containing selenium instead of sulfur). SeP functions for the transport of selenium to specific tissues in a receptor-dependent manner. Apolipoprotein E receptor 2 (ApoER2) has been identified as a SeP receptor. However, diverse variants of ApoER2 have been reported, and the details of its tissue specificity and the molecular mechanism of its efficiency remain unclear. In the present study, we found that human T lymphoma Jurkat cells have a high ability to utilize selenium via SeP, while this ability was low in human rhabdomyosarcoma cells. We identified an ApoER2 variant with a high affinity for SeP in Jurkat cells. This variant had a dissociation constant value of 0.67 nM and a highly glycosylated O-linked sugar domain. Moreover, the acidification of intracellular vesicles was necessary for selenium transport via SeP in both cell types. In rhabdomyosarcoma cells, SeP underwent proteolytic degradation in lysosomes and transported selenium in a Sec lyase-dependent manner. However, in Jurkat cells, SeP transported selenium in Sec lyase-independent manner. These findings indicate a preferential selenium transport pathway involving SeP and high-affinity ApoER2 in a Sec lyase-independent manner. Herein, we provide a novel dynamic transport pathway for selenium via SeP.


Asunto(s)
Liasas , Selenio , Humanos , Liasas/metabolismo , Selenio/metabolismo , Selenocisteína/genética , Selenocisteína/metabolismo , Selenoproteína P/genética , Selenoproteína P/metabolismo , Selenoproteínas , Células Jurkat
5.
Biol Pharm Bull ; 43(3): 366-374, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32115498

RESUMEN

Selenoprotein P (SeP) is one of the 25 human selenocysteine (Sec)-containing proteins, and is generally thought to function as a plasma carrier of the trace element selenium in the body. Recent studies, however, indicate unsuspected pivotal roles of SeP in human diseases, particularly in type 2 diabetes mellitus (T2DM) and pulmonary arterial hypertension (PAH). In this review, we will summarize the characteristics of SeP and recent advances in the field, especially focusing on the emerging roles of SeP in pathophysiological conditions. We will also discuss potential medical/pharmaceutical applications targeting SeP.


Asunto(s)
Selenoproteína P/sangre , Selenoproteína P/fisiología , Animales , Biomarcadores , Diabetes Mellitus Tipo 2/fisiopatología , Humanos , Plasma , Pronóstico , Hipertensión Arterial Pulmonar/fisiopatología , Selenio/metabolismo , Selenoproteína P/efectos de los fármacos
7.
Redox Biol ; 21: 101096, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30634125

RESUMEN

The physiological importance of reactive sulfur species (RSS) such as cysteine hydropersulfide (CysSSH) has been increasingly recognized in recent years. We have established a reactive sulfur metabolomics analysis by using RSS metabolic profiling, which revealed appreciable amounts of RSS generated endogenously and ubiquitously in both prokaryotic and eukaryotic organisms. The chemical nature of these polysulfides is not fully understood, however, because of their reactive or complicated redox-active properties. In our study here, we determined that tyrosine and a hydroxyphenyl-containing derivative, ß-(4-hydroxyphenyl)ethyl iodoacetamide (HPE-IAM), had potent stabilizing effects on diverse polysulfide residues formed in CysSSH-related low-molecular-weight species, e.g., glutathione polysulfides (oxidized glutathione trisulfide and oxidized glutathione tetrasulfide). The protective effect against degradation was likely caused by the inhibitory activity of hydroxyphenyl residues of tyrosine and HPE-IAM against alkaline hydrolysis of polysulfides. This hydrolysis occurred via heterolytic scission triggered by the hydroxyl anion acting on polysulfides that are cleaved into thiolates and sulfenic acids, with the hydrolysis being enhanced by alkylating reagents (e.g. IAM) and dimedone. Moreover, tyrosine prevented electrophilic degradation occurring in alkaline pH. The polysulfide stabilization induced by tyrosine or the hydroxyphenyl moiety of HPE-IAM will greatly improve our understanding of the chemical properties of polysulfides and may benefit the sulfur metabolomics analysis if it can be applied successfully to any kind of biological samples, including clinical specimens.


Asunto(s)
Metaboloma , Metabolómica , Sulfuros/metabolismo , Azufre/metabolismo , Tirosina/metabolismo , Cromatografía Liquida , Glutatión/análogos & derivados , Glutatión/metabolismo , Humanos , Metabolómica/métodos , Oxidación-Reducción , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Espectrometría de Masas en Tándem
8.
FEBS Open Bio ; 8(9): 1405-1411, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30186742

RESUMEN

Due to the involvement of SHP2 (SH2 domain-containing protein-tyrosine phosphatase) in human disease, including Noonan syndrome and cancer, several inhibitors targeting SHP2 have been developed. Here, we report that the commonly used SHP2 inhibitor NSC-87877 does not exhibit robust inhibitory effects on growth factor-dependent MAPK (mitogen-activated protein kinase) pathway activation and that the recently developed active site-targeting SHP2 inhibitors IIB-08, 11a-1, and GS-493 show off-target effects on ligand-evoked activation/trans-phosphorylation of the PDGFRß (platelet-derived growth factor receptor ß). GS-493 also inhibits purified human PDGFRß and SRC in vitro, whereas PDGFRß inhibition by IIB-08 and 11a-1 occurs only in the cellular context. Our results argue for extreme caution in inferring specific functions for SHP2 based on studies using these inhibitors.

9.
Nat Commun ; 8(1): 466, 2017 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-28878211

RESUMEN

Reactive oxygen species are produced transiently in response to cell stimuli, and function as second messengers that oxidize target proteins. Protein-tyrosine phosphatases are important reactive oxygen species targets, whose oxidation results in rapid, reversible, catalytic inactivation. Despite increasing evidence for the importance of protein-tyrosine phosphatase oxidation in signal transduction, the cell biological details of reactive oxygen species-catalyzed protein-tyrosine phosphatase inactivation have remained largely unclear, due to our inability to visualize protein-tyrosine phosphatase oxidation in cells. By combining proximity ligation assay with chemical labeling of cysteine residues in the sulfenic acid state, we visualize oxidized Src homology 2 domain-containing protein-tyrosine phosphatase 2 (SHP2). We find that platelet-derived growth factor evokes transient oxidation on or close to RAB5+/ early endosome antigen 1- endosomes. SHP2 oxidation requires NADPH oxidases (NOXs), and oxidized SHP2 co-localizes with platelet-derived growth factor receptor and NOX1/4. Our data demonstrate spatially and temporally limited protein oxidation within cells, and suggest that platelet-derived growth factor-dependent "redoxosomes," contribute to proper signal transduction.Protein-tyrosine phosphatases (PTPs) are thought to be major targets of receptor-activated reactive oxygen species (ROS). Here the authors describe a method that allows the localized visualization of oxidized intermediates of PTPs inside cells during signaling, and provide support for the "redoxosome" model.


Asunto(s)
Microscopía Confocal/métodos , Proteína Tirosina Fosfatasa no Receptora Tipo 11/metabolismo , Transducción de Señal , Imagen de Lapso de Tiempo/métodos , Células 3T3 , Animales , Células Cultivadas , Cisteína/genética , Cisteína/metabolismo , Células Hep G2 , Humanos , Immunoblotting , Ratones , Ratones Noqueados , NADPH Oxidasas/metabolismo , Oxidación-Reducción/efectos de los fármacos , Factor de Crecimiento Derivado de Plaquetas/farmacología , Proteína Tirosina Fosfatasa no Receptora Tipo 11/genética , Especies Reactivas de Oxígeno/metabolismo , Receptores del Factor de Crecimiento Derivado de Plaquetas/metabolismo
10.
Cancer Cell ; 30(2): 194-196, 2016 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-27505669

RESUMEN

Much effort has been expended to develop inhibitors against protein-tyrosine phosphatases (PTPs), nearly all of it unsuccessful. A recent report, describing a highly specific, orally bioavailable inhibitor of the PTP oncoprotein SHP2 with in vivo activity, suggests that allostery might provide a way forward for PTP inhibitor development.


Asunto(s)
Neoplasias/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/farmacología , Proteína Tirosina Fosfatasa no Receptora Tipo 11/antagonistas & inhibidores , Animales , Humanos , Ratones , Terapia Molecular Dirigida , Neoplasias/enzimología , Neoplasias/genética , Proteína Tirosina Fosfatasa no Receptora Tipo 11/genética
11.
PLoS One ; 9(12): e114905, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25526643

RESUMEN

MAP6 proteins (MAP6s), which include MAP6-N (also called Stable Tubule Only Polypeptide, or STOP) and MAP6d1 (MAP6 domain-containing protein 1, also called STOP-Like protein 21 kD, or SL21), bind to and stabilize microtubules. MAP6 deletion in mice severely alters integrated brain functions and is associated with synaptic defects, suggesting that MAP6s may also have alternative cellular roles. MAP6s reportedly associate with the Golgi apparatus through palmitoylation of their N-terminal domain, and specific isoforms have been shown to bind actin. Here, we use heterologous systems to investigate several biochemical properties of MAP6 proteins. We demonstrate that the three N-terminal cysteines of MAP6d1 are palmitoylated by a subset of DHHC-type palmitoylating enzymes. Analysis of the subcellular localization of palmitoylated MAP6d1, including electron microscopic analysis, reveals possible localization to the Golgi and the plasma membrane but no association with the endoplasmic reticulum. Moreover, we observed localization of MAP6d1 to mitochondria, which requires the N-terminus of the protein but does not require palmitoylation. We show that endogenous MAP6d1 localized at mitochondria in mature mice neurons as well as at the outer membrane and in the intermembrane space of purified mouse mitochondria. Last, we found that MAP6d1 can multimerize via a microtubule-binding module. Interestingly, most of these properties of MAP6d1 are shared by MAP6-N. Together, these results describe several properties of MAP6 proteins, including their intercellular localization and multimerization activity, which may be relevant to neuronal differentiation and synaptic functions.


Asunto(s)
Proteínas Asociadas a Microtúbulos/metabolismo , Células 3T3 , Animales , Células COS , Membrana Celular/metabolismo , Células Cultivadas , Chlorocebus aethiops , Aparato de Golgi/metabolismo , Células HEK293 , Humanos , Ratones , Microtúbulos/metabolismo , Mitocondrias/metabolismo , Neuronas/metabolismo , Neuronas/ultraestructura , Unión Proteica , Multimerización de Proteína , Transporte de Proteínas
12.
Dev Cell ; 26(6): 658-65, 2013 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-24035415

RESUMEN

SHP2 is a ubiquitously expressed protein tyrosine phosphatase, deregulation of which is associated with malignant neoplasms and developmental disorders. SHP2 is required for full activation of RAS-Erk signaling in the cytoplasm and is also present in the nucleus, where it promotes Wnt target gene activation through dephosphorylation of parafibromin. SHP2 is distributed both to the cytoplasm and nucleus at low cell density but is excluded from the nucleus at high cell density. Here, we show that SHP2 physically interacts with transcriptional coactivators YAP and TAZ, targets of the cell-density-sensing Hippo signal. Through the interaction, nonphosphorylated YAP/TAZ promote nuclear translocalization of SHP2, which in turn stimulates TCF/LEF- and TEAD-regulated genes via parafibromin dephosphorylation. Conversely, YAP/TAZ phosphorylated by Hippo signaling sequester SHP2 in the cytoplasm, thereby preventing nuclear accumulation of SHP2. Hence, YAP/TAZ serve as a rheostat for nuclear SHP2 function, which is switched off by the Hippo signal.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Núcleo Celular/metabolismo , Fosfoproteínas/metabolismo , Proteína Tirosina Fosfatasa no Receptora Tipo 11/metabolismo , Transporte Activo de Núcleo Celular , Animales , Proteínas de Ciclo Celular , Línea Celular Tumoral , Citoplasma/metabolismo , Vía de Señalización Hippo , Humanos , Ratones , Células 3T3 NIH , Fosforilación , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal , Transactivadores , Proteínas Señalizadoras YAP
13.
Mol Cell ; 43(1): 45-56, 2011 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-21726809

RESUMEN

Deregulation of SHP2 is associated with malignant diseases as well as developmental disorders. Although SHP2 is required for full activation of RAS signaling, other potential roles in cell physiology have not been elucidated. Here we show that SHP2 dephosphorylates parafibromin/Cdc73, a core component of the RNA polymerase II-associated factor (PAF) complex. Parafibromin is known to act as a tumor suppressor that inhibits cyclin D1 and c-myc by recruiting SUV39H1 histone methyltransferase. However, parafibromin can also act in the opposing direction by binding ß-catenin, thereby activating promitogenic/oncogenic Wnt signaling. We found that, on tyrosine dephosphorylation by SHP2, parafibromin acquires the ability to stably bind ß-catenin. The parafibromin/ß-catenin interaction overrides parafibromin/SUV39H1-mediated transrepression and induces expression of Wnt target genes, including cyclin D1 and c-myc. Hence, SHP2 governs the opposing functions of parafibromin, deregulation of which may cause the development of tumors or developmental malformations.


Asunto(s)
Proteína Tirosina Fosfatasa no Receptora Tipo 11/fisiología , Proteínas Supresoras de Tumor/metabolismo , Animales , Células COS , Núcleo Celular/metabolismo , Chlorocebus aethiops , Ciclina D1/genética , Ciclina D1/metabolismo , Regulación de la Expresión Génica , Células HEK293 , Humanos , Espectrometría de Masas , Ratones , Ratones Endogámicos C57BL , Fosforilación , Proteína Tirosina Fosfatasa no Receptora Tipo 11/análisis , Proteína Tirosina Fosfatasa no Receptora Tipo 11/genética , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Transducción de Señal , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/fisiología , Tirosina/metabolismo , Proteínas Wnt/metabolismo , beta Catenina/metabolismo
14.
EMBO J ; 29(1): 107-19, 2010 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-19927128

RESUMEN

Regulated activity of the retrograde molecular motor, cytoplasmic dynein, is crucial for multiple biological activities, and failure to regulate this activity can result in neuronal migration retardation or neuronal degeneration. The activity of dynein is controlled by the LIS1-Ndel1-Nde1 protein complex that participates in intracellular transport, mitosis, and neuronal migration. These biological processes are subject to tight multilevel modes of regulation. Palmitoylation is a reversible posttranslational lipid modification, which can dynamically regulate protein trafficking. We found that both Ndel1 and Nde1 undergo palmitoylation in vivo and in transfected cells by specific palmitoylation enzymes. Unpalmitoylated Ndel1 interacts better with dynein, whereas the interaction between Nde1 and cytoplasmic dynein is unaffected by palmitoylation. Furthermore, palmitoylated Ndel1 reduced cytoplasmic dynein activity as judged by Golgi distribution, VSVG and short microtubule trafficking, transport of endogenous Ndel1 and LIS1 from neurite tips to the cell body, retrograde trafficking of dynein puncta, and neuronal migration. Our findings indicate, to the best of our knowledge, for the first time that Ndel1 palmitoylation is a new mean for fine-tuning the activity of the retrograde motor cytoplasmic dynein.


Asunto(s)
Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , Dineínas/metabolismo , 1-Alquil-2-acetilglicerofosfocolina Esterasa/química , 1-Alquil-2-acetilglicerofosfocolina Esterasa/metabolismo , Secuencia de Aminoácidos , Animales , Sitios de Unión/genética , Células COS , Proteínas Portadoras/genética , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Línea Celular , Chlorocebus aethiops , Citoplasma/metabolismo , Femenino , Aparato de Golgi/metabolismo , Humanos , Técnicas In Vitro , Lipoilación , Ratones , Proteínas Asociadas a Microtúbulos/química , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Modelos Biológicos , Datos de Secuencia Molecular , Complejos Multiproteicos , Neuronas/metabolismo , Embarazo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homología de Secuencia de Aminoácido , Transfección
15.
PLoS Genet ; 5(11): e1000748, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19956733

RESUMEN

Palmitoylation is a key post-translational modification mediated by a family of DHHC-containing palmitoyl acyl-transferases (PATs). Unlike other lipid modifications, palmitoylation is reversible and thus often regulates dynamic protein interactions. We find that the mouse hair loss mutant, depilated, (dep) is due to a single amino acid deletion in the PAT, Zdhhc21, resulting in protein mislocalization and loss of palmitoylation activity. We examined expression of Zdhhc21 protein in skin and find it restricted to specific hair lineages. Loss of Zdhhc21 function results in delayed hair shaft differentiation, at the site of expression of the gene, but also leads to hyperplasia of the interfollicular epidermis (IFE) and sebaceous glands, distant from the expression site. The specific delay in follicle differentiation is associated with attenuated anagen propagation and is reflected by decreased levels of Lef1, nuclear beta-catenin, and Foxn1 in hair shaft progenitors. In the thickened basal compartment of mutant IFE, phospho-ERK and cell proliferation are increased, suggesting increased signaling through EGFR or integrin-related receptors, with a parallel reduction in expression of the key differentiation factor Gata3. We show that the Src-family kinase, Fyn, involved in keratinocyte differentiation, is a direct palmitoylation target of Zdhhc21 and is mislocalized in mutant follicles. This study is the first to demonstrate a key role for palmitoylation in regulating developmental signals in mammalian tissue homeostasis.


Asunto(s)
Aciltransferasas/genética , Diferenciación Celular , Células Epidérmicas , Folículo Piloso/citología , Homeostasis , Lipoilación/fisiología , Animales , Mutación del Sistema de Lectura , Ratones , Procesamiento Proteico-Postraduccional , Proteínas Proto-Oncogénicas c-fyn/metabolismo
16.
J Cell Biol ; 186(1): 147-60, 2009 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-19596852

RESUMEN

Protein palmitoylation is the most common posttranslational lipid modification; its reversibility mediates protein shuttling between intracellular compartments. A large family of DHHC (Asp-His-His-Cys) proteins has emerged as protein palmitoyl acyltransferases (PATs). However, mechanisms that regulate these PATs in a physiological context remain unknown. In this study, we efficiently monitored the dynamic palmitate cycling on synaptic scaffold PSD-95. We found that blocking synaptic activity rapidly induces PSD-95 palmitoylation and mediates synaptic clustering of PSD-95 and associated AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid)-type glutamate receptors. A dendritically localized DHHC2 but not the Golgi-resident DHHC3 mediates this activity-sensitive palmitoylation. Upon activity blockade, DHHC2 translocates to the postsynaptic density to transduce this effect. These data demonstrate that individual DHHC members are differentially regulated and that dynamic recruitment of protein palmitoylation machinery enables compartmentalized regulation of protein trafficking in response to extracellular signals.


Asunto(s)
Acetiltransferasas/química , Acetiltransferasas/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Lipoilación , Proteínas de la Membrana/metabolismo , Sinapsis/metabolismo , Secuencias de Aminoácidos , Compartimento Celular , Línea Celular , Dendritas/enzimología , Homólogo 4 de la Proteína Discs Large , Homeostasis , Humanos , Microscopía Fluorescente , Modelos Biológicos , Transporte de Proteínas , Receptores AMPA/metabolismo , Fracciones Subcelulares
17.
Prog Lipid Res ; 48(3-4): 117-27, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19233228

RESUMEN

Protein S-palmitoylation, the most common lipid modification with the 16-carbon fatty acid palmitate, provides an important mechanism for regulating protein trafficking and function. The unique reversibility of protein palmitoylation allows proteins to rapidly shuttle between intracellular membrane compartments. Importantly, this palmitate cycling can be regulated by some physiological stimuli, contributing to cellular homeostasis and plasticity. Although the enzyme responsible for protein palmitoylation had been long elusive, DHHC family proteins, conserved from plants to mammals, have recently emerged as palmitoyl acyl transferases. Integrated approaches including advanced proteomics, live-cell imaging, and molecular genetics are beginning to clarify the molecular machinery for palmitoylation reaction in diverse aspects of cellular functions.


Asunto(s)
Aciltransferasas/metabolismo , Membranas Intracelulares/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Lipoilación , Aciltransferasas/clasificación , Aciltransferasas/genética , Animales , Humanos , Membranas Intracelulares/enzimología , Péptidos y Proteínas de Señalización Intracelular/clasificación , Péptidos y Proteínas de Señalización Intracelular/genética , Plantas/enzimología , Plantas/genética , Plantas/metabolismo , Especificidad por Sustrato , Levaduras/enzimología , Levaduras/genética , Levaduras/metabolismo
18.
Mol Cell Biol ; 29(2): 435-47, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19001095

RESUMEN

The heterotrimeric G protein alpha subunit (Galpha) is targeted to the cytoplasmic face of the plasma membrane through reversible lipid palmitoylation and relays signals from G-protein-coupled receptors (GPCRs) to its effectors. By screening 23 DHHC motif (Asp-His-His-Cys) palmitoyl acyl-transferases, we identified DHHC3 and DHHC7 as Galpha palmitoylating enzymes. DHHC3 and DHHC7 robustly palmitoylated Galpha(q), Galpha(s), and Galpha(i2) in HEK293T cells. Knockdown of DHHC3 and DHHC7 decreased Galpha(q/11) palmitoylation and relocalized it from the plasma membrane into the cytoplasm. Photoconversion analysis revealed that Galpha(q) rapidly shuttles between the plasma membrane and the Golgi apparatus, where DHHC3 specifically localizes. Fluorescence recovery after photobleaching studies showed that DHHC3 and DHHC7 are necessary for this continuous Galpha(q) shuttling. Furthermore, DHHC3 and DHHC7 knockdown blocked the alpha(1A)-adrenergic receptor/Galpha(q/11)-mediated signaling pathway. Together, our findings revealed that DHHC3 and DHHC7 regulate GPCR-mediated signal transduction by controlling Galpha localization to the plasma membrane.


Asunto(s)
Aciltransferasas/metabolismo , Subunidad alfa de la Proteína de Unión al GTP Gi2/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gs/metabolismo , Aciltransferasas/genética , Secuencia de Bases , Línea Celular , Membrana Celular/metabolismo , Recuperación de Fluorescencia tras Fotoblanqueo , Técnicas de Silenciamiento del Gen , Aparato de Golgi/metabolismo , Hipocampo/citología , Humanos , Lipoilación , Microscopía Fluorescente , Datos de Secuencia Molecular , Neuronas/metabolismo , Transporte de Proteínas/genética , ARN Interferente Pequeño/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal/genética
19.
Pflugers Arch ; 456(6): 1199-206, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18231805

RESUMEN

Posttranslational modification provides proteins with additional function and regulatory control beyond genomic information, allowing cells to maintain homeostasis and respond to extracellular signals. Protein palmitoylation, the common posttranslational modification with the lipid palmitate, plays a pivotal role in protein trafficking and function. Palmitoylation is unique in that it is reversible and dynamically regulated by specific extracellular signals. The reversible nature of protein palmitoylation enables proteins to shuttle between intracellular compartments upon extracellular signals. However, the molecular mechanisms of protein palmitoylation have long been elusive, mostly because the enzymes responsible for protein palmitoylation were unknown. Recently, genetically conserved DHHC family proteins have emerged as palmitoyl-acyl transferases. With the identification of specific enzymes for palmitoylated proteins, including H-Ras, PSD-95, and eNOS, the specificity and regulatory mechanism of DHHC enzymes are beginning to be clarified.


Asunto(s)
Enzimas/metabolismo , Ácidos Palmíticos/metabolismo , Transducción de Señal/fisiología , Animales , Regulación Enzimológica de la Expresión Génica/genética , Regulación Enzimológica de la Expresión Génica/fisiología , Humanos , Procesamiento Proteico-Postraduccional/fisiología , Especificidad por Sustrato , Levaduras/enzimología , Levaduras/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...