Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Biol Psychiatry Glob Open Sci ; 4(2): 100289, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38390348

RESUMEN

Background: Heterozygous mutations or deletions of MEF2C cause a neurodevelopmental disorder termed MEF2C haploinsufficiency syndrome (MCHS), characterized by autism spectrum disorder and neurological symptoms. In mice, global Mef2c heterozygosity has produced multiple MCHS-like phenotypes. MEF2C is highly expressed in multiple cell types of the developing brain, including GABAergic (gamma-aminobutyric acidergic) inhibitory neurons, but the influence of MEF2C hypofunction in GABAergic neurons on MCHS-like phenotypes remains unclear. Methods: We employed GABAergic cell type-specific manipulations to study mouse Mef2c heterozygosity in a battery of MCHS-like behaviors. We also performed electroencephalography, single-cell transcriptomics, and patch-clamp electrophysiology and optogenetics to assess the impact of Mef2c haploinsufficiency on gene expression and prefrontal cortex microcircuits. Results: Mef2c heterozygosity in developing GABAergic cells produced female-specific deficits in social preference and altered approach-avoidance behavior. In female, but not male, mice, we observed that Mef2c heterozygosity in developing GABAergic cells produced 1) differentially expressed genes in multiple cell types, including parvalbumin-expressing GABAergic neurons, 2) baseline and social-related frontocortical network activity alterations, and 3) reductions in parvalbumin cell intrinsic excitability and inhibitory synaptic transmission onto deep-layer pyramidal neurons. Conclusions: MEF2C hypofunction in female, but not male, developing GABAergic cells is important for typical sociability and approach-avoidance behaviors and normal parvalbumin inhibitory neuron function in the prefrontal cortex of mice. While there is no apparent sex bias in autism spectrum disorder symptoms of MCHS, our findings suggest that GABAergic cell-specific dysfunction in females with MCHS may contribute disproportionately to sociability symptoms.

2.
Proc Natl Acad Sci U S A ; 120(7): e2210953120, 2023 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-36745812

RESUMEN

Opioid use produces enduring associations between drug reinforcement/euphoria and discreet or diffuse cues in the drug-taking environment. These powerful associations can trigger relapse in individuals recovering from opioid use disorder (OUD). Here, we sought to determine whether the epigenetic enzyme, histone deacetylase 5 (HDAC5), regulates relapse-associated behavior in an animal model of OUD. We examined the effects of nucleus accumbens (NAc) HDAC5 on both heroin- and sucrose-seeking behaviors using operant self-administration paradigms. We utilized cre-dependent viral-mediated approaches to investigate the cell-type-specific effects of HDAC5 on heroin-seeking behavior, gene expression, and medium spiny neuron (MSN) cell and synaptic physiology. We found that NAc HDAC5 functions during the acquisition phase of heroin self-administration to limit future relapse-associated behavior. Moreover, overexpressing HDAC5 in the NAc suppressed context-associated and reinstated heroin-seeking behaviors, but it did not alter sucrose seeking. We also found that HDAC5 functions within dopamine D1 receptor-expressing MSNs to suppress cue-induced heroin seeking, and within dopamine D2 receptor-expressing MSNs to suppress drug-primed heroin seeking. Assessing cell-type-specific transcriptomics, we found that HDAC5 reduced expression of multiple ion transport genes in both D1- and D2-MSNs. Consistent with this observation, HDAC5 also produced firing rate depression in both MSN classes. These findings revealed roles for HDAC5 during active heroin use in both D1- and D2-MSNs to limit distinct triggers of drug-seeking behavior. Together, our results suggest that HDAC5 might limit relapse vulnerability through regulation of ion channel gene expression and suppression of MSN firing rates during active heroin use.


Asunto(s)
Cocaína , Heroína , Ratones , Animales , Ratones Transgénicos , Heroína/metabolismo , Heroína/farmacología , Cocaína/farmacología , Refuerzo en Psicología , Comportamiento de Búsqueda de Drogas/fisiología , Epigénesis Genética , Núcleo Accumbens/fisiología , Autoadministración
3.
Elife ; 122023 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-36780219

RESUMEN

Chronic stress can produce reward system deficits (i.e., anhedonia) and other common symptoms associated with depressive disorders, as well as neural circuit hypofunction in the medial prefrontal cortex (mPFC). However, the molecular mechanisms by which chronic stress promotes depressive-like behavior and hypofrontality remain unclear. We show here that the neuronal activity-regulated transcription factor, NPAS4, in the mPFC is regulated by chronic social defeat stress (CSDS), and it is required in this brain region for CSDS-induced changes in sucrose preference and natural reward motivation in the mice. Interestingly, NPAS4 is not required for CSDS-induced social avoidance or anxiety-like behavior. We also find that mPFC NPAS4 is required for CSDS-induced reductions in pyramidal neuron dendritic spine density, excitatory synaptic transmission, and presynaptic function, revealing a relationship between perturbation in excitatory synaptic transmission and the expression of anhedonia-like behavior in the mice. Finally, analysis of the mice mPFC tissues revealed that NPAS4 regulates the expression of numerous genes linked to glutamatergic synapses and ribosomal function, the expression of upregulated genes in CSDS-susceptible animals, and differentially expressed genes in postmortem human brains of patients with common neuropsychiatric disorders, including depression. Together, our findings position NPAS4 as a key mediator of chronic stress-induced hypofrontal states and anhedonia-like behavior.


Asunto(s)
Anhedonia , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Derrota Social , Animales , Humanos , Ratones , Anhedonia/fisiología , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Depresión , Ratones Endogámicos C57BL , Corteza Prefrontal/fisiología , Conducta Social , Estrés Psicológico/psicología , Sinapsis/metabolismo
4.
Neuropsychopharmacology ; 47(10): 1816-1825, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35788684

RESUMEN

Methamphetamine (METH) abuse is associated with the emergence of cognitive deficits and hypofrontality, a pathophysiological marker of many neuropsychiatric disorders that is produced by altered balance of local excitatory and inhibitory synaptic transmission. However, there is a dearth of information regarding the cellular and synaptic mechanisms underlying METH-induced cognitive deficits and associated hypofrontal states. Using PV-Cre transgenic rats that went through a METH sensitization regime or saline (SAL) followed by 7-10 days of home cage abstinence combined with cognitive tests, chemogenetic experiments, and whole-cell patch recordings on the prelimbic prefrontal cortex (PFC), we investigated the cellular and synaptic mechanisms underlying METH-induce hypofrontality. We report here that repeated METH administration in rats produces deficits in working memory and increases in inhibitory synaptic transmission onto pyramidal neurons in the PFC. The increased PFC inhibition is detected by an increase in spontaneous and evoked inhibitory postsynaptic synaptic currents (IPSCs), an increase in GABAergic presynaptic function, and a shift in the excitatory-inhibitory balance onto PFC deep-layer pyramidal neurons. We find that pharmacological blockade of D1 dopamine receptor function reduces the METH-induced augmentation of IPSCs, suggesting a critical role for D1 dopamine signaling in METH-induced hypofrontality. In addition, repeated METH administration increases the intrinsic excitability of parvalbumin-positive fast spiking interneurons (PV + FSIs), a key local interneuron population in PFC that contributes to the control of inhibitory tone. Using a cell type-specific chemogenetic approach, we show that increasing PV + FSIs activity in the PFC is necessary and sufficient to cause deficits in temporal order memory similar to those induced by METH. Conversely, reducing PV + FSIs activity in the PFC of METH-exposed rats rescues METH-induced temporal order memory deficits. Together, our findings reveal that repeated METH exposure increases PFC inhibitory tone through a D1 dopamine signaling-dependent potentiation of inhibitory synaptic transmission, and that reduction of PV + FSIs activity can rescue METH-induced cognitive deficits, suggesting a potential therapeutic approach to treating cognitive symptoms in patients suffering from METH use disorder.


Asunto(s)
Trastornos del Conocimiento , Cognición , GABAérgicos , Metanfetamina , Corteza Prefrontal , Transmisión Sináptica , Animales , Cognición/efectos de los fármacos , Trastornos del Conocimiento/inducido químicamente , Dopamina/farmacología , GABAérgicos/toxicidad , Interneuronas/fisiología , Metanfetamina/toxicidad , Corteza Prefrontal/efectos de los fármacos , Corteza Prefrontal/metabolismo , Células Piramidales , Ratas , Receptores de Dopamina D1 , Transmisión Sináptica/efectos de los fármacos
5.
Neuropsychopharmacology ; 46(11): 2021-2029, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33649502

RESUMEN

Autism spectrum disorder (ASD) is characterized by impairments in social communication and interaction and restricted, repetitive behaviors. It is frequently associated with comorbidities, such as attention-deficit hyperactivity disorder, altered sensory sensitivity, and intellectual disability. A de novo nonsense mutation in EPHB2 (Q857X) was discovered in a female patient with ASD [13], revealing EPHB2 as a candidate ASD risk gene. EPHB2 is a receptor tyrosine kinase implicated in axon guidance, synaptogenesis, and synaptic plasticity, positioning it as a plausible contributor to the pathophysiology of ASD and related disorders. In this study, we show that the Q857X mutation produced a truncated protein lacking forward signaling and that global disruption of one EphB2 allele (EphB2+/-) in mice produced several behavioral phenotypes reminiscent of ASD and common associated symptoms. EphB2+/- female, but not male, mice displayed increased repetitive behavior, motor hyperactivity, and learning and memory deficits, revealing sex-specific effects of EPHB2 hypofunction. Moreover, we observed a significant increase in the intrinsic excitability, but not excitatory/inhibitory ratio, of motor cortex layer V pyramidal neurons in EphB2+/- female, but not male, mice, suggesting a possible mechanism by which EPHB2 hypofunction may contribute to sex-specific motor-related phenotypes. Together, our findings suggest that EPHB2 hypofunction, particularly in females, is sufficient to produce ASD-associated behaviors and altered cortical functions in mice.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Receptor EphB2/genética , Factores Sexuales , Animales , Encéfalo , Femenino , Masculino , Ratones , Ratones Noqueados , Plasticidad Neuronal
6.
Biol Psychiatry ; 88(6): 488-499, 2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32418612

RESUMEN

BACKGROUND: Microdeletions of the MEF2C gene are linked to a syndromic form of autism termed MEF2C haploinsufficiency syndrome (MCHS). MEF2C hypofunction in neurons is presumed to underlie most of the symptoms of MCHS. However, it is unclear in which cell populations MEF2C functions to regulate neurotypical development. METHODS: Multiple biochemical, molecular, electrophysiological, behavioral, and transgenic mouse approaches were used to characterize MCHS-relevant synaptic, behavioral, and gene expression changes in mouse models of MCHS. RESULTS: We showed that MCHS-associated missense mutations cluster in the conserved DNA binding domain and disrupt MEF2C DNA binding. DNA binding-deficient global Mef2c heterozygous mice (Mef2c-Het) displayed numerous MCHS-related behaviors, including autism-related behaviors, changes in cortical gene expression, and deficits in cortical excitatory synaptic transmission. We detected hundreds of dysregulated genes in Mef2c-Het cortex, including significant enrichments of autism risk and excitatory neuron genes. In addition, we observed an enrichment of upregulated microglial genes, but this was not due to neuroinflammation in the Mef2c-Het cortex. Importantly, conditional Mef2c heterozygosity in forebrain excitatory neurons reproduced a subset of the Mef2c-Het phenotypes, while conditional Mef2c heterozygosity in microglia reproduced social deficits and repetitive behavior. CONCLUSIONS: Taken together, our findings show that mutations found in individuals with MCHS disrupt the DNA-binding function of MEF2C, and DNA binding-deficient Mef2c global heterozygous mice display numerous MCHS-related phenotypes, including excitatory neuron and microglia gene expression changes. Our findings suggest that MEF2C regulates typical brain development and function through multiple cell types, including excitatory neuronal and neuroimmune populations.


Asunto(s)
Haploinsuficiencia , Neuronas , Animales , Modelos Animales de Enfermedad , Factores de Transcripción MEF2/genética , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Transmisión Sináptica
7.
Elife ; 5: e14120, 2016 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-26971710

RESUMEN

Recent findings indicate a high level of specialization at the level of microcircuits and cell populations within brain structures with regards to the control of fear and anxiety. The hippocampus, however, has been treated as a unitary structure in anxiety and fear research despite mounting evidence that different hippocampal subregions have specialized roles in other cognitive domains. Using novel cell-type- and region-specific conditional knockouts of the GABAA receptor α2 subunit, we demonstrate that inhibition of the principal neurons of the dentate gyrus or CA3 via α2-containing GABAA receptors (α2GABAARs) is required to suppress anxiety, while the inhibition of CA1 pyramidal neurons is required to suppress fear responses. We further show that the diazepam-modulation of hippocampal theta activity shows certain parallels with our behavioral findings, suggesting a possible mechanism for the observed behavioral effects. Thus, our findings demonstrate a double dissociation in the regulation of anxiety versus fear by hippocampal microcircuitry.


Asunto(s)
Ansiedad , Mapeo Encefálico , Miedo , Hipocampo/fisiología , Animales , Ratones , Red Nerviosa , Receptores de GABA-A/genética
8.
J Neurosci ; 35(40): 13698-712, 2015 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-26446222

RESUMEN

Interference between similar or overlapping memories formed at different times poses an important challenge on the hippocampal declarative memory system. Difficulties in managing interference are at the core of disabling cognitive deficits in neuropsychiatric disorders. Computational models have suggested that, in the normal brain, the sparse activation of the dentate gyrus granule cells maintained by tonic inhibitory control enables pattern separation, an orthogonalization process that allows distinct representations of memories despite interference. To test this mechanistic hypothesis, we generated mice with significantly reduced expression of the α5-containing GABAA (α5-GABAARs) receptors selectively in the granule cells of the dentate gyrus (α5DGKO mice). α5DGKO mice had reduced tonic inhibition of the granule cells without any change in fast phasic inhibition and showed increased activation in the dentate gyrus when presented with novel stimuli. α5DGKO mice showed impairments in cognitive tasks characterized by high interference, without any deficiencies in low-interference tasks, suggesting specific impairment of pattern separation. Reduction of fast phasic inhibition in the dentate gyrus through granule cell-selective knock-out of α2-GABAARs or the knock-out of the α5-GABAARs in the downstream CA3 area did not detract from pattern separation abilities, which confirms the anatomical and molecular specificity of the findings. In addition to lending empirical support to computational hypotheses, our findings have implications for the treatment of interference-related cognitive symptoms in neuropsychiatric disorders, particularly considering the availability of pharmacological agents selectively targeting α5-GABAARs. SIGNIFICANCE STATEMENT: Interference between similar memories poses a significant limitation on the hippocampal declarative memory system, and impaired interference management is a cognitive symptom in many disorders. Thus, understanding mechanisms of successful interference management or processes that can lead to interference-related memory problems has high theoretical and translational importance. This study provides empirical evidence that tonic inhibition in the dentate gyrus (DG), which maintains sparseness of neuronal activation in the DG, is essential for management of interference. The specificity of findings to tonic, but not faster, more transient types of neuronal inhibition and to the DG, but not the neighboring brain areas, is presented through control experiments. Thus, the findings link interference management to a specific mechanism, proposed previously by computational models.


Asunto(s)
Giro Dentado/citología , Memoria/fisiología , Inhibición Neural/genética , Neuronas/fisiología , Receptores de GABA-A/metabolismo , Animales , Discriminación en Psicología/fisiología , Conducta Exploratoria/fisiología , Agonistas del GABA/farmacocinética , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/genética , Imidazoles/farmacocinética , Técnicas In Vitro , Potenciales Postsinápticos Inhibidores/efectos de los fármacos , Potenciales Postsinápticos Inhibidores/genética , Aprendizaje por Laberinto/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuronas/efectos de los fármacos , Proteínas Proto-Oncogénicas c-fos/metabolismo , Receptores de GABA-A/genética , Reconocimiento en Psicología/fisiología , Natación/psicología
9.
Neuron ; 85(5): 967-81, 2015 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-25741723

RESUMEN

Presenilins play essential roles in memory formation, synaptic function, and neuronal survival. Mutations in the Presenilin-1 (PSEN1) gene are the major cause of familial Alzheimer's disease (FAD). How PSEN1 mutations cause FAD is unclear, and pathogenic mechanisms based on gain or loss of function have been proposed. Here, we generated Psen1 knockin (KI) mice carrying the FAD mutation L435F or C410Y. Remarkably, KI mice homozygous for either mutation recapitulate the phenotypes of Psen1(-/-) mice. Neither mutation altered Psen1 mRNA expression, but both abolished γ-secretase activity. Heterozygosity for the KI mutation decreased production of Aß40 and Aß42, increased the Aß42/Aß40 ratio, and exacerbated Aß deposition. Furthermore, the L435F mutation impairs hippocampal synaptic plasticity and memory and causes age-dependent neurodegeneration in the aging cerebral cortex. Collectively, our findings reveal that FAD mutations can cause complete loss of Presenilin-1 function in vivo, suggesting that clinical PSEN mutations produce FAD through a loss-of-function mechanism.


Asunto(s)
Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Técnicas de Sustitución del Gen , Neurogénesis/fisiología , Presenilina-1/fisiología , Péptidos beta-Amiloides/biosíntesis , Péptidos beta-Amiloides/genética , Animales , Corteza Cerebral/metabolismo , Corteza Cerebral/patología , Técnicas de Sustitución del Gen/métodos , Hipocampo/metabolismo , Hipocampo/patología , Humanos , Masculino , Trastornos de la Memoria/genética , Trastornos de la Memoria/metabolismo , Trastornos de la Memoria/patología , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Transgénicos , Mutación/genética , Técnicas de Cultivo de Órganos
10.
J Neurosci ; 34(10): 3653-67, 2014 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-24599464

RESUMEN

Transient receptor potential (TRP) channels are abundant in the brain where they regulate transmission of sensory signals. The expression patterns of different TRPC subunits (TRPC1, 4, and 5) are consistent with their potential role in fear-related behaviors. Accordingly, we found recently that mutant mice lacking a specific TRP channel subunit, TRPC5, exhibited decreased innate fear responses. Both TRPC5 and another member of the same subfamily, TRPC4, form heteromeric complexes with the TRPC1 subunit (TRPC1/5 and TRPC1/4, respectively). As TRP channels with specific subunit compositions may have different functional properties, we hypothesized that fear-related behaviors could be differentially controlled by TRPCs with distinct subunit arrangements. In this study, we focused on the analysis of mutant mice lacking the TRPC4 subunit, which, as we confirmed in experiments on control mice, is expressed in brain areas implicated in the control of fear and anxiety. In behavioral experiments, we found that constitutive ablation of TRPC4 was associated with diminished anxiety levels (innate fear). Furthermore, knockdown of TRPC4 protein in the lateral amygdala via lentiviral-mediated gene delivery of RNAi mimicked the behavioral phenotype of constitutive TRPC4-null (TRPC4(-/-)) mouse. Recordings in brain slices demonstrated that these behavioral modifications could stem from the lack of TRPC4 potentiation in neurons in the lateral nucleus of the amygdala through two Gαq/11 protein-coupled signaling pathways, activated via Group I metabotropic glutamate receptors and cholecystokinin 2 receptors, respectively. Thus, TRPC4 and the structurally and functionally related subunit, TRPC5, may both contribute to the mechanisms underlying regulation of innate fear responses.


Asunto(s)
Amígdala del Cerebelo/metabolismo , Ansiedad/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/fisiología , Canales Catiónicos TRPC/deficiencia , Animales , Ansiedad/genética , Ansiedad/psicología , Regulación hacia Abajo/genética , Potenciales Evocados Somatosensoriales/genética , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/genética , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Canales Catiónicos TRPC/biosíntesis
11.
Cell ; 137(4): 761-72, 2009 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-19450521

RESUMEN

The transient receptor potential channel 5 (TRPC5) is predominantly expressed in the brain where it can form heterotetrameric complexes with TRPC1 and TRPC4 channel subunits. These excitatory, nonselective cationic channels are regulated by G protein, phospholipase C-coupled receptors. Here, we show that TRPC5(-/-) mice exhibit diminished innate fear levels in response to innately aversive stimuli. Moreover, mutant mice exhibited significant reductions in responses mediated by synaptic activation of Group I metabotropic glutamate and cholecystokinin 2 receptors in neurons of the amygdala. Synaptic strength at afferent inputs to the amygdala was diminished in P10-P13 null mice. In contrast, baseline synaptic transmission, membrane excitability, and spike timing-dependent long-term potentiation at cortical and thalamic inputs to the amygdala were largely normal in older null mice. These experiments provide genetic evidence that TRPC5, activated via G protein-coupled neuronal receptors, has an essential function in innate fear.


Asunto(s)
Amígdala del Cerebelo/fisiología , Miedo , Canales Catiónicos TRPC/fisiología , Animales , Encéfalo , Condicionamiento Psicológico , Potenciación a Largo Plazo , Masculino , Ratones , Ratones Noqueados , Receptores de Glutamato Metabotrópico/fisiología , Transmisión Sináptica , Canales Catiónicos TRPC/genética
12.
Proc Natl Acad Sci U S A ; 104(35): 14146-50, 2007 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-17709755

RESUMEN

Emotional arousal, linked to a surge of norepinephrine (NE) in the amygdala, leads to creation of stronger and longer-lasting memories. However, little is known about the synaptic mechanisms of such modulatory NE influences. Long-term potentiation (LTP) in auditory inputs to the lateral nucleus of the amygdala was recently linked to the acquisition of fear memory. Therefore we explored whether LTP induction at thalamo-amygdala projections, conveying the acoustic conditioned stimulus information to the amygdala during fear conditioning, is under adrenergic control. Using whole-cell recordings from amygdala slices, we show that NE suppresses GABAergic inhibition of projection neurons in the lateral amygdala and enables the induction of LTP at thalamo-amygdala synapses under conditions of intact GABA(A) receptor-mediated inhibition. Our data indicate that the NE effects on the efficacy of inhibition could result from a decrease in excitability of local circuit interneurons, without direct effects of NE on release machinery of the GABA-containing vesicles or the size of single-quanta postsynaptic GABA(A) receptor-mediated responses. Thus, adrenergic modulation of local interneurons may contribute to the formation of fear memory by gating LTP in the conditioned stimulus pathways.


Asunto(s)
Amígdala del Cerebelo/fisiología , Aprendizaje por Asociación , Potenciación a Largo Plazo/fisiología , Memoria/fisiología , Norepinefrina/fisiología , Sinapsis/fisiología , Tálamo/fisiología , Animales , Ratas , Ratas Sprague-Dawley , Receptores de GABA-A/fisiología , Ácido gamma-Aminobutírico/fisiología
13.
Neuron ; 52(5): 883-96, 2006 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-17145508

RESUMEN

Input-specific long-term potentiation (LTP) in afferent inputs to the amygdala serves an essential function in the acquisition of fear memory. Factors underlying input specificity of synaptic modifications implicated in information transfer in fear conditioning pathways remain unclear. Here we show that the strength of naive synapses in two auditory inputs converging on a single neuron in the lateral nucleus of the amygdala (LA) is only modified when a postsynaptic action potential closely follows a synaptic response. The stronger inhibitory drive in thalamic pathway, as compared with cortical input, hampers the induction of LTP at thalamo-amygdala synapses, contributing to the spatial specificity of LTP in convergent inputs. These results indicate that spike timing-dependent synaptic plasticity in afferent projections to the LA is both temporarily and spatially asymmetric, thus providing a mechanism for the conditioned stimulus discrimination during fear behavior.


Asunto(s)
Condicionamiento Psicológico/fisiología , Miedo/fisiología , Memoria/fisiología , Vías Nerviosas/fisiología , Plasticidad Neuronal/fisiología , Sinapsis/fisiología , Potenciales de Acción/fisiología , Amígdala del Cerebelo/fisiología , Animales , Corteza Cerebral/fisiología , Electrofisiología , Potenciales Postsinápticos Excitadores/fisiología , Glutamatos/fisiología , Técnicas In Vitro , Interneuronas/fisiología , Potenciación a Largo Plazo/fisiología , Vías Nerviosas/citología , Neuronas Aferentes/fisiología , Ratas , Ratas Sprague-Dawley , Receptores de N-Metil-D-Aspartato/fisiología , Transmisión Sináptica/fisiología , Tálamo/fisiología
14.
Eur J Neurosci ; 23(1): 239-50, 2006 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-16420433

RESUMEN

The amygdala plays key roles in several aspects of addiction to drugs of abuse. This brain structure has been implicated in behaviours that reflect drug reward, drug seeking, and the aversive effects of drug withdrawal. Using a model that involves repeated cocaine injections to approximate 'binge' intoxication, we show in rats that during cocaine withdrawal, the impact of rewarding brain stimulation is attenuated, as quantified by alterations in intracranial self-stimulation (ICSS) behaviour. These behavioural signs of withdrawal are accompanied by enhancements of glutamatergic synaptic transmission within the lateral amygdala (LA) that occlude electrically induced long-term potentiation (LTP) in tissue slices. Synaptic enhancements during periods of cocaine withdrawal are mechanistically similar to LTP induced with electrical stimulation in control slices, as both forms of synaptic plasticity involve an increase in glutamate release. These results suggest that mechanisms of LTP within the amygdala are recruited during withdrawal from repeated exposure to cocaine. As such, they raise the possibility that the development and maintenance of addictive behaviours may involve, at least in part, mechanisms of synaptic plasticity within specific amygdala circuits.


Asunto(s)
Amígdala del Cerebelo/fisiología , Cocaína/administración & dosificación , Inhibidores de Captación de Dopamina/administración & dosificación , Potenciación a Largo Plazo/efectos de los fármacos , Síndrome de Abstinencia a Sustancias/fisiopatología , 6-Ciano 7-nitroquinoxalina 2,3-diona/farmacología , Animales , Conducta Animal , Relación Dosis-Respuesta en la Radiación , Estimulación Eléctrica/métodos , Antagonistas de Aminoácidos Excitadores/farmacología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/fisiología , Potenciales Postsinápticos Excitadores/efectos de la radiación , Miedo , Agonistas del GABA/farmacología , Potenciación a Largo Plazo/fisiología , Potenciación a Largo Plazo/efectos de la radiación , Masculino , Muscimol/farmacología , Ratas , Ratas Sprague-Dawley , Reflejo de Sobresalto/efectos de los fármacos , Reflejo de Sobresalto/fisiología , Reflejo de Sobresalto/efectos de la radiación , Autoadministración , Transmisión Sináptica/efectos de los fármacos , Transmisión Sináptica/fisiología , Transmisión Sináptica/efectos de la radiación , Factores de Tiempo
15.
Cell ; 123(4): 697-709, 2005 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-16286011

RESUMEN

Little is known about the molecular mechanisms of learned and innate fear. We have identified stathmin, an inhibitor of microtubule formation, as highly expressed in the lateral nucleus (LA) of the amygdala as well as in the thalamic and cortical structures that send information to the LA about the conditioned (learned fear) and unconditioned stimuli (innate fear). Whole-cell recordings from amygdala slices that are isolated from stathmin knockout mice show deficits in spike-timing-dependent long-term potentiation (LTP). The knockout mice also exhibit decreased memory in amygdala-dependent fear conditioning and fail to recognize danger in innately aversive environments. By contrast, these mice do not show deficits in the water maze, a spatial task dependent on the hippocampus, where stathmin is not normally expressed. We therefore conclude that stathmin is required for the induction of LTP in afferent inputs to the amygdala and is essential in regulating both innate and learned fear.


Asunto(s)
Amígdala del Cerebelo/fisiología , Condicionamiento Psicológico/fisiología , Miedo/fisiología , Estatmina/fisiología , Amígdala del Cerebelo/metabolismo , Animales , Animales Recién Nacidos , Conducta Animal/fisiología , Corteza Cerebral/metabolismo , Corteza Cerebral/fisiología , Electrofisiología , Expresión Génica/genética , Regulación del Desarrollo de la Expresión Génica/genética , Hipocampo/fisiología , Inmunohistoquímica , Hibridación in Situ , Técnicas In Vitro , Potenciación a Largo Plazo/fisiología , Aprendizaje por Laberinto/fisiología , Trastornos de la Memoria/genética , Trastornos de la Memoria/fisiopatología , Ratones , Ratones Noqueados , Microtúbulos/metabolismo , Vías Nerviosas/fisiología , Neuronas/metabolismo , Receptores de GABA-A/fisiología , Receptores de N-Metil-D-Aspartato/fisiología , Estatmina/genética , Transmisión Sináptica/fisiología , Tálamo/metabolismo , Tálamo/fisiología , Factores de Tiempo , Tubulina (Proteína)/análisis
16.
Neuron ; 41(1): 139-51, 2004 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-14715141

RESUMEN

Long-term synaptic modifications in afferent inputs to the amygdala underlie fear conditioning in animals. Fear conditioning to a single sensory modality does not generalize to other cues, implying that synaptic modifications in fear conditioning pathways are input specific. The mechanisms of pathway specificity of long-term potentiation (LTP) are poorly understood. Here we show that inhibition of glutamate transporters leads to the loss of input specificity of LTP in the amygdala slices, as assessed by monitoring synaptic responses at two independent inputs converging on a single postsynaptic neuron. Diffusion of glutamate ("spillover") from stimulated synapses, paired with postsynaptic depolarization, is sufficient to induce LTP in the heterosynaptic pathway, whereas an enzymatic glutamate scavenger abolishes this effect. These results establish active glutamate uptake as a crucial mechanism maintaining the pathway specificity of LTP in the neural circuitry of fear conditioning.


Asunto(s)
Condicionamiento Psicológico/fisiología , Miedo/fisiología , Ácido Glutámico/metabolismo , Potenciación a Largo Plazo/fisiología , Amígdala del Cerebelo/fisiología , Animales , Corteza Auditiva/fisiología , Calcio/metabolismo , Potenciales Postsinápticos Excitadores , Técnicas In Vitro , Membranas Intracelulares/metabolismo , Vías Nerviosas/fisiología , Ratas , Ratas Sprague-Dawley , Transmisión Sináptica/fisiología , Temperatura , Tálamo/fisiología
17.
J Neurosci ; 23(36): 11427-35, 2003 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-14673007

RESUMEN

Arachidonic acid metabolites have been proposed as signaling molecules in hippocampal long-term potentiation (LTP) and long-term depression (LTD) for >15 years. However, the functional role of these molecules remains controversial. Here we used a multidisciplinary biochemical, electrophysiological, and genetic approach to examine the function of the 12-lipoxygenase metabolites of arachidonic acid in long-term synaptic plasticity at CA3-CA1 synapses. We found that the 12-lipoxygenase pathway is required for the induction of metabotropic glutamate receptor-dependent LTD (mGluR-LTD), but is not required for LTP: (1) Hippocampal homogenates were capable of synthesizing the 12-lipoxygenase metabolite of arachidonic acid, 12(S)-hydroxyeicosa-5Z,8Z,10E,14Z-tetraenoic acid (HETE). (2) Stimulation protocols that induce mGluR-LTD lead to a release of 12-(S)-HETE from acute hippocampal slices. (3) A mouse in which the leukocyte-type 12-lipoxygenase (the neuronal isoform) was deleted through homologous recombination was deficient in mGluR-LTD, but showed normal LTP. (4) Pharmacological inhibition of 12-lipoxygenase also blocked induction of mGluR-LTD. (5) Finally, direct application of 12(S)-HPETE, but not 15(S)-HPETE, to hippocampal slices induced a long-term depression of synaptic transmission that mimicked and occluded mGluR-LTD induced by synaptic stimulation. Thus, 12(S)-hydroperoxyeicosa-5Z, 8Z, 10E, 14Z-tetraenoic acid (12(S)-HPETE), a 12-lipoxygenase metabolite of arachidonic acid, satisfies all of the criteria of a messenger molecule that is actively recruited for the induction of mGluR-LTD.


Asunto(s)
Araquidonato 12-Lipooxigenasa/metabolismo , Hipocampo/fisiología , Leucotrienos/metabolismo , Depresión Sináptica a Largo Plazo , Células Piramidales/fisiología , Receptores de Glutamato Metabotrópico/metabolismo , Ácido 12-Hidroxi-5,8,10,14-Eicosatetraenoico/metabolismo , Animales , Animales Recién Nacidos , Araquidonato 12-Lipooxigenasa/genética , Ácido Araquidónico/metabolismo , Células Cultivadas , Potenciales Evocados , Hipocampo/citología , Hipocampo/enzimología , Leucotrienos/farmacología , Depresión Sináptica a Largo Plazo/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Técnicas de Placa-Clamp , Células Piramidales/enzimología , Receptor del Glutamato Metabotropico 5 , Sinapsis/fisiología
18.
Neuron ; 34(2): 289-300, 2002 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-11970870

RESUMEN

Auditory information critical for fear conditioning, a model of emotional learning, is conveyed to the lateral nucleus of the amygdala via two routes: directly from the medial geniculate nucleus and indirectly from the auditory cortex. Here we show in the cortico-amygdala pathway that learned fear occludes electrically induced long-term potentiation (LTP). Quantal analysis of the expression of LTP in this pathway reveals a significant presynaptic component reflected in an increase in probability of transmitter release. Conditioned fear also is accompanied by the enhancement in transmitter release at this cortico-amygdala synapse. These results indicate that the synaptic projections from the auditory cortex to the lateral amygdala are modified during the acquisition and expression of fear to auditory stimulation, thus further strengthening the proposed link between LTP in the auditory pathways to the amygdala and learned fear.


Asunto(s)
Amígdala del Cerebelo/fisiología , Corteza Cerebral/fisiología , Condicionamiento Psicológico/fisiología , Miedo/fisiología , Potenciación a Largo Plazo/fisiología , Terminales Presinápticos/fisiología , Transmisión Sináptica/fisiología , Animales , Electrofisiología , Técnicas In Vitro , Vías Nerviosas/fisiología , Ratas , Ratas Sprague-Dawley , Sinapsis/fisiología
19.
Cell ; 111(6): 905-18, 2002 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-12526815

RESUMEN

We identified the Grp gene, encoding gastrin-releasing peptide, as being highly expressed both in the lateral nucleus of the amygdala, the nucleus where associations for Pavlovian learned fear are formed, and in the regions that convey fearful auditory information to the lateral nucleus. Moreover, we found that GRP receptor (GRPR) is expressed in GABAergic interneurons of the lateral nucleus. GRP excites these interneurons and increases their inhibition of principal neurons. GRPR-deficient mice showed decreased inhibition of principal neurons by the interneurons, enhanced long-term potentiation (LTP), and greater and more persistent long-term fear memory. By contrast, these mice performed normally in hippocampus-dependent Morris maze. These experiments provide genetic evidence that GRP and its neural circuitry operate as a negative feedback regulating fear and establish a causal relationship between Grpr gene expression, LTP, and amygdala-dependent memory for fear.


Asunto(s)
Amígdala del Cerebelo/fisiología , Miedo , Memoria , Transducción de Señal , Amígdala del Cerebelo/anatomía & histología , Animales , Electrofisiología , Péptido Liberador de Gastrina/biosíntesis , Péptido Liberador de Gastrina/fisiología , Biblioteca de Genes , Hipocampo , Inmunohistoquímica , Hibridación in Situ , Aprendizaje por Laberinto , Memoria a Corto Plazo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Modelos Biológicos , Neuronas/fisiología , Receptores de Bombesina/biosíntesis , Receptores de Bombesina/fisiología , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA