Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 858, 2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38286996

RESUMEN

Despite the potentially higher energy density and improved safety of solid-state batteries (SSBs) relative to Li-ion batteries, failure due to Li-filament penetration of the solid electrolyte and subsequent short circuit remains a critical issue. Herein, we show that Li-filament growth is suppressed in solid-electrolyte pellets with a relative density beyond ~95%. Below this threshold value, however, the battery shorts more easily as the density increases due to faster Li-filament growth within the percolating pores in the pellet. The microstructural properties (e.g., pore size, connectivity, porosity, and tortuosity) of [Formula: see text] with various relative densities are quantified using focused ion beam-scanning electron microscopy tomography and permeability tests. Furthermore, modeling results provide details on the Li-filament growth inside pores ranging from 0.2 to 2 µm in size. Our findings improve the understanding of the failure modes of SSBs and provide guidelines for the design of dendrite-free SSBs.

2.
Nano Lett ; 24(5): 1544-1552, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38270095

RESUMEN

Lithium-metal (Li0) anodes potentially enable all-solid-state batteries with high energy density. However, it shows incompatibility with sulfide solid-state electrolytes (SEs). One strategy is introducing an interlayer, generally made of a mixed ionic-electronic conductor (MIEC). Yet, how Li behaves within MIEC remains unknown. Herein, we investigated the Li dynamics in a graphite interlayer, a typical MIEC, by using operando neutron imaging and Raman spectroscopy. This study revealed that intercalation-extrusion-dominated mechanochemical reactions during cell assembly transform the graphite into a Li-graphite interlayer consisting of SE, Li0, and graphite-intercalation compounds. During charging, Li+ preferentially deposited at the Li-graphite|SE interface. Upon further plating, Li0-dendrites formed, inducing short circuits and the reverse migration of Li0. Modeling indicates the interface has the lowest nucleation barrier, governing lithium transport paths. Our study elucidates intricate mechano-chemo-electrochemical processes in mixed conducting interlayers. The behavior of Li+ and Li0 in the interlayer is governed by multiple competing factors.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...