Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Aging Dis ; 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38916734

RESUMEN

Type 2 diabetes (T2D) is a widespread health condition both in the United States and around the world, with insulin resistance playing a critical role in its development. Effective treatment strategies are essential for managing T2D and mitigating associated risks. Adiponectin (APN), secreted by adipocytes, exhibits an inverse correlation with obesity-related adiposity, and its levels are negatively associated with insulin resistance and body mass index. This study aimed to enhance endogenous APN levels in a diet-induced obese (DIO) mouse model using lipid nanoparticles (LNP) as safe delivery agents for APN mRNA conjugates. The results indicate that APN-mRNA-LNP administration successfully induced APN synthesis in various tissues, including muscle, liver, kidney, pancreas, and adipose cells. This induction was associated with several positive outcomes, such as preventing diet-induced body weight gain, improving hyperglycemia by promoting Glut-4 expression, alleviating diabetic nephropathy symptoms by blocking the EGFR pathway, and reducing pro-inflammatory cytokine production. In addition, the treatment demonstrated enhanced insulin sensitivity by activating DGKd and inhibiting PKCε. This resulted in reactivation of insulin receptors in insulin target tissues and stimulation of insulin secretion from pancreatic beta cells. The findings of the present study highlight the potential of APN-mRNA-LNP-based nucleic acid therapy as a treatment for type 2 diabetes, offering a comprehensive approach to addressing its complexities.

2.
Exp Neurol ; 378: 114820, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38789025

RESUMEN

Alzheimer's disease (AD) is a neurodegenerative disease characterized by memory loss, cognitive impairment, and behavioral and psychological symptoms of dementia. The limited efficacy of drugs for the treatment of neurodegenerative diseases reflects their complex etiology and pathogenesis. A novel in vitro model may help to bridge the gap between existing preclinical animal models and human clinical trials, thus identifying promising therapeutic targets that can be explored in upcoming clinical trials. By assisting in the identification of the mechanism of action and potential dangers, in vitro testing can also shorten the time and expense of translation. AIM: As a result of these factors, our objective is to develop a powerful and informative cellular model of AD within a short period of time. Through triggering the MAPK and NF-κß signaling pathways with the aid of small chemical compounds (PAF C-16 and BetA), respectively, in mouse microglial (SIM-A9) and neuroblast Neuro-2a (N2a) cell lines. RESULTS: PAF C-16, initiated an activation effect at a concentration of 3.12 nM to 25 nM in the SIM-A9 and N2a cell lines after 72 h. BetA, activated the NF-κß pathway with a concentration of 12.5 nM to 25 nM in the SIM-A9 and N2a cell lines after 72 h. The combination of the activator chemicals provided suitable activation for MEK1/2-ERK and NF-κß in more than three subcultures. Activators significantly initiate APP and MAPT gene expression, as well as the expression of proteins APP, ß. Amyloid, tau, and p-tau. The activation of the targeted pathways leads to significant morphological changes. CONCLUSION: We can infer that the MEK1/2-ERK and NF-κß pathways, respectively, are directly activated by the PAF C-16 and BetA chemicals. The activation of MEK1/2-ERK pathway results in the activation of the APP gene, which in turn activates the ß. Amyloid protein, which in turn results in plaque. Furthermore, NF-κß activation results in the activation of the MAPT gene, which leads to Tau and p-Tau protein activation, which ultimately results in tangles. This can be put into practice in just three days, with a high level of activity and stability that is passed down to the next three generations (subculture), with significant morphological changes. In microglial and neuroblast cell lines, we were successful in creating a novel AD-cell model.


Asunto(s)
Enfermedad de Alzheimer , Microglía , Animales , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Ratones , Microglía/metabolismo , Microglía/efectos de los fármacos , FN-kappa B/metabolismo , Proteínas tau/metabolismo , Proteínas tau/genética , Humanos , Línea Celular , Relación Dosis-Respuesta a Droga
3.
Cell Biochem Funct ; 42(1): e3910, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38269524

RESUMEN

Adiponectin is an antidiabetic endogenous adipokine that plays a protective role against the unfavorable metabolic sequelae of obesity. Recent evidence suggests a sinister link between hypoadiponectinemia and development of insulin resistance/type 2 diabetes (T2D). Adiponectin's insulin-sensitizing property is mediated through the specific adiponectin receptors R1 and R2, which activate the AMP-activated protein kinase (AMPK) and peroxisome proliferator-activated receptor (PPAR) α pathways. AdipoAI is a novel synthetic analogue of endogenous adiponectin with possibly similar pharmacological effects. Thus, there is a need of orally active small molecules that activate Adipoq subunits, and their downstream signaling, which could ameliorate obesity related type 2 diabetes. In the study we aim to investigate the effects of AdipoAI on obesity and T2D. Through in-vitro and in-vivo analyses, we investigated the antidiabetic potentials of AdipoAI and compared it with AdipoRON, another orally active adiponectin receptors agonist. Our results showed that in-vitro treatment of AdipoAI (0-5 µM) increased adiponectin receptor subunits AdipoR1/R2 with increase in AMPK and APPL1 protein expression in C2C12 myotubes. Similarly, in-vivo, oral administration of AdipoAI (25 mg/kg) observed similar effects as that of AdipoRON (50 mg/kg) with improved control of blood glucose and insulin sensitivity in diet-induced obesity (DIO) mice models. Further, AdipoAI significantly reduced epididymal fat content with decrease in inflammatory markers and increase in PPAR-α and AMPK levels and exhibited hepatoprotective effects in liver. Further, AdipoAI and AdipoRON also observed similar results in adipose tissue. Thus, our results suggest that low doses of orally active small molecule agonist of adiponectin AdipoAI can be a promising therapeutic target for obesity and T2D.


Asunto(s)
Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Animales , Ratones , Hipoglucemiantes/farmacología , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Proteínas Quinasas Activadas por AMP , Adiponectina , Receptores Activados del Proliferador del Peroxisoma , Receptores de Adiponectina , Obesidad/tratamiento farmacológico
4.
Int J Biol Sci ; 19(16): 5187-5203, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37928259

RESUMEN

Periodontitis is a highly prevalent chronic inflammatory disease with an exaggerated host immune response, resulting in periodontal tissue destruction and potential tooth loss. The long non-coding RNA, LncR-ANRIL, located on human chromosome 9p21, is recognized as a genetic risk factor for various conditions, including atherosclerosis, periodontitis, diabetes, and cancer. LncR-APDC is an ortholog of ANRIL located on mouse genome chr4. This study aims to comprehend the regulatory role of lncR-APDC in periodontitis progression. Our experimental findings, obtained from lncR-APDC gene knockout (KO) mice with induced experimental periodontitis (EP), revealed exacerbated bone loss and disrupted pro-inflammatory cytokine regulation. Downregulation of osteogenic differentiation occurred in bone marrow stem cells harvested from lncR-APDC-KO mice. Furthermore, single-cell RNA sequencing of periodontitis gingival tissue revealed alterations in the proportion and function of immune cells, including T and B cells, macrophages, and neutrophils, due to lncR-APDC silencing. Our findings also unveiled a previously unidentified epithelial cell subset that is distinctively presenting in the lncR-APDC-KO group. This epithelial subset, characterized by the positive expression of Krt8 and Krt18, engages in interactions with immune cells through a variety of ligand-receptor pairs. The expression of Tff2, now recognized for its role in chronic inflammatory conditions, exhibited a notable increase across various tissue and cell types in lncR-APDC deficient mice. Additionally, our investigation revealed the potential for a direct binding interaction between lncR-APDC and Tff2. Intra-gingival administration of AAV9-lncR-APDC was shown to have therapeutic effects in the EP model. In conclusion, our results suggest that lncR-APDC plays a critical role in the progression of periodontal disease and holds therapeutic potential for periodontitis. Furthermore, the presence of the distinctive epithelial subpopulation and significantly elevated Tff2 levels in the lncR-APDC-silenced EP model offer new perspectives on the epigenetic regulation of periodontitis pathogenesis.


Asunto(s)
Periodontitis , ARN Largo no Codificante , Animales , Humanos , Ratones , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Osteogénesis , Epigénesis Genética/genética , Periodontitis/genética , Periodontitis/metabolismo , Periodontitis/patología , Citocinas/metabolismo , Ratones Noqueados
5.
RNA Biol ; 20(1): 836-846, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-37953645

RESUMEN

The long noncoding RNA (lncR) ANRIL in the human genome is an established genetic risk factor for atherosclerosis, periodontitis, diabetes, and cancer. However, the regulatory role of lncR-ANRIL in bone and adipose tissue metabolism remains unclear. To elucidate the function of lncRNA ANRIL in a mouse model, we investigated its ortholog, AK148321 (referred to as lncR-APDC), located on chr4 of the mouse genome, which is hypothesized to have similar biological functions to ANRIL. We initially revealed that lncR-APDC in mouse bone marrow cells (BMSCs) and lncR-ANRIL in human osteoblasts (hFOBs) are both increased during early osteogenesis. Subsequently, we examined the osteogenesis, adipogenesis, osteoclastogenesis function with lncR-APDC deletion/overexpression cell models. In vivo, we compared the phenotypic differences in bone and adipose tissue between APDC-KO and wild-type mice. Our findings demonstrated that lncR-APDC deficiency impaired osteogenesis while promoting adipogenesis and osteoclastogenesis. Conversely, the overexpression of lncR-APDC stimulated osteogenesis, but impaired adipogenesis and osteoclastogenesis. Furthermore, KDM6B was downregulated with lncR-APDC deficiency and upregulated with overexpression. Through binding-site analysis, we identified miR-99a as a potential target of lncR-APDC. The results suggest that lncR-APDC exerts its osteogenic function via miR-99a/KDM6B/Hox pathways. Additionally, osteoclasto-osteogenic imbalance was mediated by lncR-APDC through MAPK/p38 and TLR4/MyD88 activation. These findings highlight the pivotal role of lncR-APDC as a key regulator in bone and fat tissue metabolism. It shows potential therapeutic for addressing imbalances in osteogenesis, adipogenesis, and osteoclastogenesis.


Asunto(s)
MicroARNs , ARN Largo no Codificante , Humanos , Ratones , Animales , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Huesos/metabolismo , Osteogénesis/genética , Tejido Adiposo/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Histona Demetilasas con Dominio de Jumonji
6.
Br J Pharmacol ; 180(18): 2436-2451, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37143319

RESUMEN

BACKGROUND AND PURPOSE: Low-grade inflammation, a common feature of both diabetes and periodontitis, partly accounts for the complexity and refractoriness of diabetes-associated periodontitis. Adiponectin (APN), the most abundant adipokine in human blood, has been widely reported to have anti-inflammatory functions. Herein, we investigated the ability of an APN receptor agonist, AdipoAI, to alleviate diabetes-associated periodontitis. Furthermore, we revealed the possible mechanism underlying its anti-inflammatory effects. EXPERIMENTAL APPROACH: The maxillary first molar of Zucker diabetic fatty (ZDF) rats was ligated to construct a diabetes-associated periodontitis model, and rats were administered AdipoAI by gavage. We examined diabetes-related indexes, pathological changes in insulin target organs, alveolar bone resorption and systemic and local inflammation. In vitro, transwell assays were used to evaluate monocyte/macrophage migration induced by human gingival fibroblasts (hGFs) with/without AdipoAI treatment. Additionally, we examined chemokine expression levels in hGFs and hGF-induced monocyte/macrophage migration upon siRNA knockdown of Adiponectin receptor expression. Expression of Adipo1/Adipo2 receptors and inflammation-related signalling pathways were examined by IHC and WB, followed by confirmation with an NF-κB P65 inhibitor (BAY 11-7082). KEY RESULTS: AdipoAI lowered fasting blood glucose and serum insulin in ZDF rats and alleviated inflammation in insulin target tissues. Locally, AdipoAI reduced alveolar bone absorption and gingival inflammation. Mechanistically, AdipoAI inhibited hGF-induced monocyte/macrophage migration by reducing CCL2 secretion. In hGFs, AdipoAI attenuated LPS-induced activation of NF-κB P65 and CCL2 expression, which was dependent on the Adipo receptor 1. CONCLUSION AND IMPLICATIONS: AdipoAI, with its ability to alleviate inflammatory damage in tissues, is a candidate for diabetes-associated periodontitis treatment.


Asunto(s)
Pérdida de Hueso Alveolar , Diabetes Mellitus Experimental , Insulinas , Periodontitis , Ratas , Humanos , Animales , Adiponectina/metabolismo , Receptores de Adiponectina/metabolismo , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/metabolismo , FN-kappa B/metabolismo , Ratas Zucker , Periodontitis/tratamiento farmacológico , Periodontitis/inducido químicamente , Periodontitis/metabolismo , Inflamación/metabolismo , Pérdida de Hueso Alveolar/tratamiento farmacológico , Pérdida de Hueso Alveolar/prevención & control , Pérdida de Hueso Alveolar/metabolismo , Macrófagos/metabolismo , Fibroblastos/metabolismo , Insulinas/metabolismo , Lipopolisacáridos/farmacología
7.
Clin Oral Implants Res ; 34(6): 602-617, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37092468

RESUMEN

AIM: Diabetics experience severe peri-implant inflammatory bone damage. We aimed to provide powerful evidence supporting the novel adiponectin receptor agonist AdipoAI in treating diabetes-associated peri-implantitis. MATERIALS AND METHODS: Twenty-four ZDF-Leprfa/Crl rats were randomly allocated to three groups (N = 8). After feeding with a high-fat diet to establish diabetic rats, experimental peri-implantitis was induced by implanting titanium rods (1.5 mm diameter and 20 mm length) contaminated with Staphylococcus aureus into the femurs. Radiographic evaluation, microCT, histological analyses and qRT-PCR were used to detect inflammatory infiltration and bone destruction. In vitro, the inhibition by AdipoAI of osteoclastogenesis, including the number and function of osteoclasts, was investigated by TRAP staining, immunofluorescence, qRT-PCR and Western blotting. Immunofluorescence, qRT-PCR and Western blotting were also utilized to explore AdipoR1, APPL1, NF-κB and Wnt5a-Ror2 signalling molecules in this process. One-way ANOVA with Tukey's post hoc test was used to compare the data. RESULTS: AdipoAI reduced inflammation and bone destruction caused by peri-implantitis in diabetic rats, which were manifested by a reduction in F4/80-positive macrophage infiltration by 72%, the number of osteoclasts by 58% and the levels of cytokines (p < .05) in disease group. In vitro, 1 µM AdipoAI decreased the number of osteoclasts to 51%, inhibited F-actin ring formation and reduced the levels of related markers (p < .05). Mechanistically, AdipoAI activated AdipoR1/APPL1 and conversely suppressed the phosphorylation of IκB-α, nuclear translocation of P65 and the Wnt5a-Ror2 signalling pathway (p < .05). CONCLUSIONS: AdipoAI suppressed osteoclastogenesis in diabetes-associated peri-implantitis by inhibiting the NF-κB and Wnt5a-Ror2 pathways via the AdipoR1/APPL1 axis.


Asunto(s)
Resorción Ósea , Implantes Dentales , Diabetes Mellitus Experimental , Periimplantitis , Ratas , Animales , Periimplantitis/patología , Osteogénesis , FN-kappa B/metabolismo , FN-kappa B/farmacología , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/metabolismo , Osteoclastos/metabolismo , Osteoclastos/patología , Ligando RANK , Resorción Ósea/patología , Receptores Huérfanos Similares al Receptor Tirosina Quinasa/metabolismo , Receptores Huérfanos Similares al Receptor Tirosina Quinasa/farmacología , Proteínas del Tejido Nervioso/metabolismo , Proteínas del Tejido Nervioso/farmacología , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/farmacología
8.
Heliyon ; 9(3): e13975, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36873496

RESUMEN

Objectives: To investigate the role of AdipoRon in bone wound healing of calvaria critical-sized defects (CSD) in diet-induced obesity (DIO) mice. Materials and methods: After establishing the calvaria CSD in normal-chow (NC), DIO and Adiponectin knockout (APNKO) mice, AdipoRon or vehicle was orally gavaged for 3 weeks. The bone defects were analyzed by micro-CT and H&E staining. The expression of osteogenesis-related factor in the defect area, and the chemotactic gradient of SDF-1 between bone marrow and bone defect area were further analyzed. Results: AdipoRon downregulated body weight and alleviated fasting blood glucose level of DIO mice after treatment with AdipoRon in 14 and 21 days. Newly formed bone was significantly increased in the defect area of DIO and APNKO mice after treatment with AdipoRon compared with vehicle treatment. No significant difference was shown in NC mice. Furthermore, compared with NC mice, a significant decrease of BV/TV%, Tb.N value and formed bone percentage were shown in DIO and APNKO mice. The treatment with AdipoRon could reverse of decreased value and increase the newly formed bone in those mice. AdipoRon promoted col-1α expression in wound sites in DIO and APNKO mice. AdipoRon nearly quadrupled the chemotactic gradient of SDF-1 by decreasing SDF-1 expression in bone marrow and increasing it in the bone defect area in APNKO and DIO treated mice. Conclusion: AdipoRon alleviates the obesity status in DIO mice with calvarial defect and increase new bone formation in calvarial defects in DIO and APNKO mice by modulating chemotactic gradient of SDF-1.

9.
Front Aging Neurosci ; 14: 912709, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35813949

RESUMEN

Alzheimer's Disease (AD) is the most common form of dementia in older adults and has a devastating impact on the patient's quality of life, which creates a significant socio-economic burden for the affected individuals and their families. In recent years, studies have identified a relationship between periodontitis and AD. Periodontitis is an infectious/inflammatory disease that destroys the supporting periodontal structure leading to tooth loss. Dysbiosis of the oral microbiome plays a significant role in the onset and development of periodontitis exhibiting a shift to overgrowth of pathobionts in the normal microflora with increasing local inflammation. Fusobacterium nucleatum is a common pathogen that significantly overgrows in periodontitis and has also been linked to various systemic diseases. Earlier studies have reported that antibodies to F. nucleatum can be detected in the serum of patients with AD or cognitive impairment, but a causal relationship and a plausible mechanism linking the two diseases have not been identified. In this study, we conducted both in vivo and in vitro experiments and found that F. nucleatum activates microglial cells causing morphological changes, accelerated proliferation and enhanced expression of TNF-α and IL-1ß in microglial cells. In our in vivo experiments, we found that F. nucleatum-induced periodontitis resulted in the exacerbation of Alzheimer's symptoms in 5XFAD mice including increased cognitive impairment, beta-amyloid accumulation and Tau protein phosphorylation in the mouse cerebrum. This study may suggest a possible link between a periodontal pathogen and AD and F. nucleatum could be a risk factor in the pathogenesis of AD. We are currently further identifying the pathways through which F. nucleatum modulates molecular elements in enhancing AD symptoms and signs. Data are available via ProteomeXchange with identifier PXD033147.

10.
Front Cell Dev Biol ; 10: 832460, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35531098

RESUMEN

As a precursor to type 2 diabetes mellitus (T2D), obesity adversely alters bone cell functions, causing decreased bone quality. Currently, the mechanisms leading to alterations in bone quality in obesity and subsequently T2D are largely unclear. Emerging evidence suggests that long noncoding RNAs (lncRNAs) participate in a vast repertoire of biological processes and play essential roles in gene expression and posttranscriptional processes. Mechanistically, the expression of lncRNAs is implicated in pathogenesis surrounding the aggregation or alleviation of human diseases. To investigate the functional link between specific lncRNA and obesity-associated poor bone quality and elucidate the molecular mechanisms underlying the interaction between the two, we first assessed the structure of the bones in a diet-induced obese (DIO) mouse model. We found that bone microarchitecture markedly deteriorated in the DIO mice, mainly because of aberrant remodeling in the bone structure. The results of in vitro mechanistic experiments supported these observations. We then screened mRNAs and lncRNAs from DIO bones and functionally identified a specific lncRNA, Gm15222. Further analyses demonstrated that Gm15222 promotes osteogenesis and inhibits the expression of adipogenesis-related genes in DIO via recruitment of lysine demethylases KDM6B and KDM4B, respectively. Through this epigenetic pathway, Gm15222 modulates histone methylation of osteogenic genes. In addition, Gm15222 showed a positive correlation with the expression of a neighboring gene, BMP4. Together, the results of this study identified and provided initial characterization of Gm15222 as a critical epigenetic modifier that regulates osteogenesis and has potential roles in targeting the pathophysiology of bone disease in obesity and potential T2D.

11.
J Periodontal Res ; 57(2): 381-391, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34984683

RESUMEN

BACKGROUND AND OBJECTIVE: Type 2 diabetes (T2D)-associated periodontitis is severe and refractory in many cases. Considered an inflammatory disease, T2D predisposes to periodontitis by increasing whole-body inflammation. One mechanism of increased inflammation is thatT2D is mediated by loss of production or function of the anti-inflammatory hormone adiponectin. In our previous report, AdipoRon, an adiponectin receptor agonist, and AdipoAI, a newly discovered, more specific agonist, attenuated T2D-associated inflammation by inhibiting osteoclastogenesis and LPS-induced endotoxemia. Autophagy plays an important role during osteoclast differentiation and function. The impact of AdipoAI on osteoclast function and autophagy involved in osteoclastogenesis is not known. Here, we compare AdipoRon and AdipoAI potency, side effects and mechanism of action in T2D-associated periodontitis. METHODS: The RAW 264.7 cell line was used for in vitro studies. We analyzed the potential cytotoxicity of AdipoAI using the CCK-8 assay. The anti-osteoclastogenic potential of AdipoAI was studied by real-time qPCR and tartrate-resistant acid phosphatase staining. The actions of AdipoAI involved in autophagy were tested by real-time qPCR, western blot and immunofluorescence staining. In the diet-induced obesity model of T2D, we investigated the impact of AdipoAI on fasting blood glucose, alveolar bone loss, and gingival inflammation in mice with experimental periodontitis. RESULTS: AdipoRon inhibited osteoclastogenesis and AdipoAI inhibited osteoclastogenesis at lower doses than AdipoRon without any cytotoxicity. In DIO mice with experimental periodontitis, AdipoAI reduced mouse body weight in 14 days, reducing fasting glucose levels, alveolar bone destruction, osteoclast number along the alveolar bone surface, and decreased the expression of pro-inflammatory factors in periodontal tissues. AdipoAI and AdipoRon also enhanced LC3A/B expression when cultured with RANKL.3-Methyladenine, a known autophagy inhibitor, decreased LC3A/B expression and reversed the inhibition of osteoclastogenesis during AdipoAI treatment. CONCLUSIONS: Our results demonstrate that AdipoAI ameliorates the severity of T2D-associated periodontitis by enhancing autophagy in osteoclasts at lower doses than AdipoRon without demonstrable side effects. Thus, AdipoAI has pharmaceutical potential for treating diabetes-associated periodontal disease.


Asunto(s)
Pérdida de Hueso Alveolar , Diabetes Mellitus Tipo 2 , Periodontitis , Adiponectina , Pérdida de Hueso Alveolar/tratamiento farmacológico , Pérdida de Hueso Alveolar/metabolismo , Pérdida de Hueso Alveolar/prevención & control , Animales , Autofagia , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Ratones , Osteoclastos , Periodontitis/tratamiento farmacológico , Periodontitis/metabolismo , Ligando RANK/metabolismo , Receptores de Adiponectina/agonistas , Receptores de Adiponectina/metabolismo , Receptores de Adiponectina/uso terapéutico
12.
Front Immunol ; 13: 1051654, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36703959

RESUMEN

Background: Adiponectin (APN) is an endogenous adipokine secreted from adipocytes that exerts anti-inflammatory properties. AdipoAI is an orally active adiponectin receptor agonist identified by our group that can emulate APN's anti-inflammatory properties through mechanisms that are not fully understood. LncRNAs, a type of noncoding RNA more than 200 bp in length, have been demonstrated to have abundant biological functions, including in anti-inflammatory responses. Materials and Result: In the current study, we performed a lncRNA microarray in LPS-induced Raw264.7 cells that were prestimulated with AdipoAI and screened 110 DElncRNAs and 190 DEmRNAs. Enrichment analyses were conducted on total mRNAs and DEmRNAs, including GSVA, ssGSEA, GO/KEGG, GSEA, and PPI analysis. Among all these processes, endocytosis was significantly enriched. A coexpression analysis was built based on DElncRNAs and DEmRNAs. Then, using TargetScan and miRwalk to predict related microRNAs of DElncRNAs and DEmRNAs, respectively, we established competing endogenous RNA (ceRNA) networks including 54 mRNAs from 8 GO items. Furthermore, 33 m6A methylation-related marker genes were obtained from a previous study and used for the construction of an m6A-related lncRNA network by coexpression analysis. We identified FTO as the hub gene of the network and 14 lncRNAs that interacted with it. The expression levels of 10 lncRNAs selected from ceRNA and FTO-related lncRNA networks were validated with qRT‒PCR. Finally, macrophage phenotype scores showed that AdipoAI could attenuate the M2b and M2c polarization of macrophages and correlate with the above lncRNAs. Conclusion: Our work reveals that lncRNAs might be involved in the anti-inflammation process of AdipoAI in LPS-induced macrophages through the ceRNA network and the epigenetic regulation of m6A. Mechanistically, these lncRNAs associated with AdipoAI might be related to endocytosis and polarization in macrophages and provide new candidates for the anti-inflammatory application of APN and its receptor agonist.


Asunto(s)
ARN Largo no Codificante , Receptores de Adiponectina , Epigénesis Genética , Regulación Neoplásica de la Expresión Génica , Redes Reguladoras de Genes , Lipopolisacáridos , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Células RAW 264.7 , Ratones , Animales , Receptores de Adiponectina/agonistas
13.
Front Cell Dev Biol ; 9: 703670, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34650969

RESUMEN

To investigate the effects and mechanisms of irisin, a newly discovered myokine, in cartilage development, osteoarthritis (OA) pathophysiology and its therapeutic potential for treating OA we applied the following five strategical analyses using (1) murine joint tissues at different developmental stages; (2) human normal and OA pathological tissue samples; (3) experimental OA mouse model; (4) irisin gene knockout (KO) and knock in (KI) mouse lines and their cartilage cells; (5) in vitro mechanistic experiments. We found that Irisin was involved in all stages of cartilage development. Both human and mouse OA tissues showed a decreased expression of irisin. Intra-articular injection of irisin attenuated ACLT-induced OA progression. Irisin knockout mice developed severe OA while irisin overexpression in both irisin KI mice and intraarticular injection of irisin protein attenuated OA progression. Irisin inhibited inflammation and promoted anabolism in chondrogenic ADTC5 cells. Proliferative potential of primary chondrocytes from KI mice was found to be enhanced, while KO mice showed an inhibition under normal or inflammatory conditions. The primary chondrocytes from irisin KI mice showed reduced expression of inflammatory factors and the chondrocytes isolated from KO mice showed an opposite pattern. In conclusion, it is the first time to show that irisin is involved in cartilage development and OA pathogenesis. Irisin has the potential to ameliorate OA progression by decreasing cartilage degradation and inhibiting inflammation, which could lead to the development of a novel therapeutic target for treating bone and cartilage disorders including osteoarthritis.

14.
Arch Oral Biol ; 129: 105207, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34273868

RESUMEN

OBJECTIVE: In this study, we aimed to investigate the therapeutic potential of miR-335-5p lipidoid nanocomplexes coated on Titanium (Ti) SLActive surface by lyophilization. DESIGN: In our model, we coated miR-335-5p/Lipidoid nanoparticles on titanium implant, seeded GFP-labelled mouse bone marrow stromal cells (BMSCs) onto the functionalized Ti implant surface, and analyzed the transfection efficiency, cell adhesion, proliferation, and osteogenic activity of the bone-implant interface. RESULTS: The Ti SLActive surface displayed a suitable hydrophilicity ability and provided a large surface area for miRNA loading, enabling spatial retention of the miRNAs within the nanopores until cellular delivery. We demonstrated a high transfection efficiency of miR-335-5p lipidoid nanoparticles in BMSCs seeded onto the Ti SLActive surface, even after 14 days. Alkaline phosphatase (ALP) activity and cell vitality were significantly increased in BMSCs transfected with miR-335-5p at 7 and 14 days as opposed to cells transfected with negative controls. When miR-335-5p transfected BMSCs were induced to undergo osteogenic differentiation, we detected increased mRNA expression of osteogenic markers including Alkaline phosphatase (ALP), collagen I (COL1), osteocalcin (OCN) and bone sialoprotein (BSP) at 7 and 14 days as compared with negative controls. CONCLUSION: MiR-335-5p lipidoid nanoparticles could be used as a new cost-effective methodology to increase the osteogenic capacity of biomedical Ti implants.


Asunto(s)
Implantes Dentales , MicroARNs , Nanopartículas , Animales , Diferenciación Celular , Células Cultivadas , Ratones , MicroARNs/genética , Osteogénesis , Titanio
15.
Br J Pharmacol ; 178(2): 280-297, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32986862

RESUMEN

BACKGROUND AND PURPOSE: Adiponectin (APN) is an adipokine secreted from adipocytes that binds to APN receptors AdipoR1 and AdipoR2 and exerts an anti-inflammatory response through mechanisms not fully understood. There is a need to develop small molecules that activate AdipoR1 and AdipoR2 and to be used to inhibit the inflammatory response in lipopolysaccharide (LPS)-induced endotoxemia and other inflammatory disorders. EXPERIMENTAL APPROACH: We designed 10 new structural analogues of an AdipoR agonist, AdipoRon (APR), and assessed their anti-inflammatory properties. Bone marrow-derived macrophages (BMMs) and peritoneal macrophages (PEMs) were isolated from mice. Levels of pro-inflammatory cytokines were measured by reverse transcription and real-time quantitative polymerase chain reaction (qRT-PCR), enzyme-linked immunosorbent assay (ELISA) and microarray in LPS-induced endotoxemia mice and diet-induced obesity (DIO) mice in which systemic inflammation prevails. Western blotting, immunohistochemistry (IHC), siRNA interference and immunoprecipitation were used to detect signalling pathways. KEY RESULTS: A novel APN receptor agonist named adipo anti-inflammation agonist (AdipoAI) strongly suppresses inflammation in DIO and endotoxemia mice, as well as in cultured macrophages. We also found that AdipoAI attenuated the association of AdipoR1 and APPL1 via myeloid differentiation marker 88 (MyD88) signalling, thus inhibiting activation of nuclear factor kappa B (NF-κB), mitogen-activated protein kinase (MAPK) and c-Maf pathways and limiting the production of pro-inflammatory cytokines in LPS-induced macrophages. CONCLUSION AND IMPLICATIONS: AdipoAI is a promising alternative therapeutic approach to APN and APR to suppress inflammation in LPS-induced endotoxemia and other inflammatory disorders via distinct signalling pathways.


Asunto(s)
Adiponectina , Receptores de Adiponectina , Proteínas Adaptadoras Transductoras de Señales , Adiponectina/metabolismo , Animales , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Citocinas/metabolismo , Inflamación/tratamiento farmacológico , Lipopolisacáridos , Ratones , FN-kappa B/metabolismo , Receptores de Adiponectina/metabolismo , Receptores de Adiponectina/uso terapéutico
16.
J Cell Physiol ; 236(1): 664-676, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32572964

RESUMEN

Balancing the process of bone formation and resorption is important in the maintenance of healthy bone. Therefore, the discovery of novel factors that can regulate bone metabolism remains needed. Irisin is a newly identified hormone-like peptide. Recent studies have reported the involvement of irisin in many physiological and pathological conditions with bone mineral density changes, including osteopenia and osteoporotic fractures. In this study, we generated the first line of Osx-Cre:FNDC5/irisin KO mice, in which FNDC5/irisin was specifically deleted in the osteoblast lineage. Gene and protein expressions of irisin were remarkably decreased in bones but no significant differences in other tissues were observed in knockout mice. FNDC5/irisin deficient mice showed a lower bone density and significantly delayed bone development and mineralization from early-stage to adulthood. Our phenotypical analysis exhibited decreased osteoblast-related gene expression and increased osteoclast-related gene expression in bone tissues, and reduced adipose tissue browning due to bone-born irisin deletion. By harvesting and culturing MSCs from the knockout mice, we found that osteoblastogenesis was inhibited and osteoclastogenesis was increased. By using irisin stimulated wildtype primary cells as a gain-of-function model, we further revealed the effects and mechanisms of irisin on promoting osteogenesis and inhibiting osteoclastogenesis in vitro. In addition, positive effects of exercise, including bone strength enhancement and body weight loss were remarkably weakened due to irisin deficiency. Interestingly, these changes can be rescued by supplemental administration of recombinant irisin during exercise. Our study indicates that irisin plays an important role in bone metabolism and the crosstalk between bone and adipose tissue. Irisin represents a potential molecule for the prevention and treatment of bone metabolic diseases.


Asunto(s)
Huesos , Fibronectinas , Músculo Esquelético , Osteoblastos , Osteogénesis , Animales , Huesos/metabolismo , Enfermedades Óseas Metabólicas/metabolismo , Fibronectinas/deficiencia , Fibronectinas/genética , Músculo Esquelético/metabolismo , Osteoblastos/metabolismo , Osteogénesis/efectos de los fármacos , Osteogénesis/genética , Ratones
17.
J Periodontal Res ; 55(2): 191-198, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31541471

RESUMEN

BACKGROUND AND OBJECTIVE: Periodontitis is a prevalent oral disease responsible for tooth loss. MicroRNAs have been proven crucial in bone disorders over the past decades. Promotive effect on osteogenic activities by microRNA-335-5p (miR-335-5p) has been well demonstrated, but its role involved in the pathogenesis of periodontitis remains elusive. In this study, we established experimental periodontitis (EP) on transgenic mice overexpressing miR-335-5p (335-Tg) to investigate the novel effects of miR-335-5p on periodontal inflammation and bone loss. METHODS: Experimental periodontitis was established via ligation. The expression of inflammatory and osteoclastic genes was examined by quantitative real-time PCR (qPCR). Morphology of alveolar bone was analyzed by microcomputed tomography (µCT). Hematoxylin and eosin (H&E), tartrate-resistant acid phosphatase (TRAP), and Toll-like receptor 4 (TLR4) immunohistochemistry (IHC) staining were conducted for histological analysis. RESULTS: The expression of miR-335-5p decreased significantly in the periodontal tissues of EP. Compared to the WT-EP group, µCT analysis showed less bone loss in the 335-Tg-EP group accompanying with a decreased number of TRAP-positive osteoclasts. H&E and IHC staining exhibited attenuated inflammation and TLR4 expression in the 335-Tg-EP group. Furthermore, reduced expressions of IL-1ß, IL-6, TNF-α, and TLR4 were also detected in the 335-Tg-EP group. Overexpression of miR-335-5p in vivo weakened the periodontal bone destruction and inflammation compared with the WT-EP group. CONCLUSIONS: Our data exhibit novel roles of miR-335-5p in preventing bone loss and inflammation in experimental periodontitis.


Asunto(s)
Pérdida de Hueso Alveolar/patología , MicroARNs/genética , Periodontitis/patología , Pérdida de Hueso Alveolar/diagnóstico por imagen , Animales , Citocinas/metabolismo , Ratones , Ratones Transgénicos , Osteoclastos/citología , Receptor Toll-Like 4/metabolismo , Microtomografía por Rayos X
18.
Exp Cell Res ; 387(2): 111757, 2020 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-31838062

RESUMEN

Diabetic bone defects may exhibit impaired endochondral ossification (ECO) leading to delayed bone repair. AdipoRon, a receptor agonist of adiponectin polymers, can ameliorate diabetes and related complications, as well as overcome the disadvantages of the unstable structure of artificial adiponectin polymers. Here, the effects of AdipoRon on the survival and differentiation of chondrocytes in a diabetic environment were explored focusing on related mechanisms in gene and protein levels. In vivo, AdipoRon was applied to diet-induced-obesity (DIO) mice, a model of obesity and type 2 diabetes, with femoral fracture. Sequential histological evaluations and micro-CT were examined for further verification. We found that AdipoRon could ameliorate cell viability, apoptosis, and reactive oxygen species (ROS) production and promote mRNA expression of chondrogenic markers and cartilaginous matrix production of ATDC5 cells in high glucose medium via activating ERK1/2 pathway. Additionally, DIO mice with intragastric AdipoRon administration had more neocartilage and accelerated new bone formation. These data suggest that AdipoRon could stimulate bone regeneration via ECO in diabetes.


Asunto(s)
Regeneración Ósea/efectos de los fármacos , Huesos/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Condrocitos/efectos de los fármacos , Curación de Fractura/efectos de los fármacos , Fracturas Óseas/tratamiento farmacológico , Piperidinas/farmacología , Animales , Apoptosis/efectos de los fármacos , Cartílago/efectos de los fármacos , Línea Celular , Condrogénesis/efectos de los fármacos , Diabetes Mellitus Tipo 2/complicaciones , Fracturas Óseas/etiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Osteogénesis/efectos de los fármacos
19.
J Cell Physiol ; 234(5): 7062-7069, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30479003

RESUMEN

Central adiponectin (APN) in either the globular (gAPN) or full-length forms decreases sympathetic tone and increases trabecular bone mass in mice through the hypothalamus. It is known that cannabinoid type-1 (CB1) receptors are expressed in the hypothalamic ventromedial nucleus and participate in energy metabolism by controlling sympathetic activity. However, whether central APN could influence endocannabinoid signaling through CB1 receptor to regulate bone metabolism has not been characterized. Here we demonstrate that gAPN downregulated CB1 expression in embryonic mouse hypothalamus N1 cells in vitro. gAPN intracerebroventricular (icv) infusions also decreased hypothalamic CB1 expression and bone formation parameters in APN-knockout (APN-KO) and wild-type mice. Most importantly, mice pretreated with icv infusions with the CB1 receptor agonist arachidonyl-2'-chloroethylamine or antagonist rimonabant attenuated or enhanced respectively central APN induction of bone formation. We then investigated whether epigenetic signaling mechanisms were involved in the downregulation of hypothalamic CB1 expression by gAPN. We found gAPN enhanced expression levels of various histone deacetylases (HDACs), especially HDAC5. Furthermore, chromatin immunoprecipitation assays revealed HDAC5 bound to the transcriptional start site transcription start site 2 region of the CB1 promoter. In summary, our study identified a possible novel central APN-HDAC5-CB1 signaling mechanism that promotes peripheral bone formation through epigenetic regulation of hypothalamic CB1 expression.


Asunto(s)
Adiponectina/administración & dosificación , Adiponectina/metabolismo , Remodelación Ósea/efectos de los fármacos , Hueso Esponjoso/efectos de los fármacos , Epigénesis Genética/efectos de los fármacos , Fémur/efectos de los fármacos , Hipotálamo/efectos de los fármacos , Receptor Cannabinoide CB1/metabolismo , Adiponectina/deficiencia , Adiponectina/genética , Animales , Sitios de Unión , Hueso Esponjoso/metabolismo , Células Cultivadas , Regulación hacia Abajo , Fémur/metabolismo , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , Hipotálamo/metabolismo , Infusiones Intraventriculares , Ratones Endogámicos C57BL , Ratones Noqueados , Regiones Promotoras Genéticas , Receptor Cannabinoide CB1/genética
20.
Biomaterials ; 177: 88-97, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29886386

RESUMEN

Specific microRNAs (miRs) and the Wnt signaling pathway play critical roles in regulating bone development and homeostasis. Our previous studies revealed the ability of miR-335-5p to promote osteogenic differentiation by downregulating Wnt antagonist Dickkopf-1 (DKK1). The purpose of this study was to use nano-materials to efficiently deliver miR-335-5p into osteogenic cells for tissue engineering applications. We synthesized and screened a library of 12 candidate nano-lipidoids,of which L8 was identified as the preferred biodegradable lipidoid for miRNA molecule delivery into cells. We then investigated whether a lipidoid-miRNA formulation of miR-335-5-p (LMF-335) could successfully deliver miR-335-5-p into cells to promote osteogenesis in vitro and calvarial bone healing in vivo. Transfection of C3H10T1/2 cells and bone marrow stromal cells (BMSCs) with LMF-335 led to decreased expression of DKK1 and increased expression of the key osteogenic genes. LMF-335 and LMF-335-transfected BMSCs were then used in combination with silk scaffolds to evaluate healing of critical-size calvarial bone defects in mice. The results revealed significant new bone formation in the defects in LMF-335 groups as compared with control groups. In conclusion, this first report supports the notion that lipidoid delivery of miRNA can be used to induce osteogenic differentiation of stem cells and bone regeneration.


Asunto(s)
Regeneración Ósea , Técnicas de Transferencia de Gen , Lípidos/química , MicroARNs/administración & dosificación , Cráneo/lesiones , Cráneo/fisiología , Animales , Línea Celular , Masculino , Ratones , Ratones Endogámicos C57BL , MicroARNs/genética , MicroARNs/uso terapéutico , Nanopartículas/química , Osteogénesis , Cráneo/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...