Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Clin Invest ; 134(9)2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38512401

RESUMEN

Bacterial translocation from the gut microbiota is a source of sepsis in susceptible patients. Previous work suggests that overgrowth of gut pathobionts, including Klebsiella pneumoniae, increases the risk of disseminated infection. Our data from a human dietary intervention study found that, in the absence of fiber, K. pneumoniae bloomed during microbiota recovery from antibiotic treatment. We thus hypothesized that dietary nutrients directly support or suppress colonization of this gut pathobiont in the microbiota. Consistent with our study in humans, complex carbohydrates in dietary fiber suppressed the colonization of K. pneumoniae and allowed for recovery of competing commensals in mouse models. In contrast, through ex vivo and in vivo modeling, we identified simple carbohydrates as a limiting resource for K. pneumoniae in the gut. As proof of principle, supplementation with lactulose, a nonabsorbed simple carbohydrate and an FDA-approved therapy, increased colonization of K. pneumoniae. Disruption of the intestinal epithelium led to dissemination of K. pneumoniae into the bloodstream and liver, which was prevented by dietary fiber. Our results show that dietary simple and complex carbohydrates were critical not only in the regulation of pathobiont colonization but also disseminated infection, suggesting that targeted dietary interventions may offer a preventative strategy in high-risk patients.


Asunto(s)
Carbohidratos de la Dieta , Microbioma Gastrointestinal , Infecciones por Klebsiella , Klebsiella pneumoniae , Klebsiella pneumoniae/metabolismo , Humanos , Ratones , Animales , Infecciones por Klebsiella/microbiología , Infecciones por Klebsiella/prevención & control , Carbohidratos de la Dieta/metabolismo , Femenino , Masculino , Fibras de la Dieta/metabolismo , Mucosa Intestinal/microbiología , Mucosa Intestinal/metabolismo , Intestinos/microbiología
2.
bioRxiv ; 2023 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-37292978

RESUMEN

Dysbiosis of the gut microbiota is increasingly appreciated as both a consequence and precipitant of human disease. The outgrowth of the bacterial family Enterobacteriaceae is a common feature of dysbiosis, including the human pathogen Klebsiella pneumoniae . Dietary interventions have proven efficacious in the resolution of dysbiosis, though the specific dietary components involved remain poorly defined. Based on a previous human diet study, we hypothesized that dietary nutrients serve as a key resource for the growth of bacteria found in dysbiosis. Through human sample testing, and ex-vivo , and in vivo modeling, we find that nitrogen is not a limiting resource for the growth of Enterobacteriaceae in the gut, contrary to previous studies. Instead, we identify dietary simple carbohydrates as critical in colonization of K. pneumoniae . We additionally find that dietary fiber is necessary for colonization resistance against K. pneumoniae , mediated by recovery of the commensal microbiota, and protecting the host against dissemination from the gut microbiota during colitis. Targeted dietary therapies based on these findings may offer a therapeutic strategy in susceptible patients with dysbiosis.

3.
Zoonoses Public Health ; 70(4): 341-351, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36779297

RESUMEN

Companion animals have been shown to carry Clostridioides difficile strains that are similar or identical to strains found in people, and a small number of studies have shown that pets carry genetically identical C. difficile isolates as their owners, suggesting inter-species transmission. However, the directionality of transmission is ultimately unknown, and the frequency with which animals acquire C. difficile following their owners' infection is unclear. The goal of this study was to assess how often pets belonging to people with C. difficile infection carry genetically related C. difficile isolates. We enrolled pet owners from two medical institutions (University of Pennsylvania Health System (UPHS) and The Ohio State University Wexner Medical Center (OSUWMC)) who had diarrhoea with or without positive C. difficile assays and tested their faeces and their pets' faeces for C. difficile using both anaerobic culture and PCR assays. When microorganisms were obtained from both the owner and pet and had the same toxin profile or ribotype, isolates underwent genomic sequencing. Faecal samples were obtained from a total of 59 humans, 72 dogs and 9 cats, representing 47 complete households (i.e. where a sample was available from the owner and at least one pet). Of these, C. difficile was detected in 30 humans, 10 dogs and 0 cats. There were only two households where C. difficile was detected in both the owner and pet. In one of these households, the C. difficile isolates were of different toxin profiles/ribotypes (A+/B+ / RT 499 from the owner, A-/B- / RT PR22386 from the dog). In the other household, the isolates were genetically identical (one SNP difference). Interestingly, the dog from this household had recently received a course of antibiotics (cefpodoxime and metronidazole). Our findings suggest that inter-species transmission of C. difficile occurs infrequently in households with human C. difficile infections.


Asunto(s)
Clostridioides difficile , Humanos , Animales , Perros , Clostridioides/genética , Mascotas , Ribotipificación/veterinaria , Antibacterianos
4.
J Clin Invest ; 132(18)2022 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-36106638

RESUMEN

BACKGROUNDSeveral molecular imaging strategies can identify bacterial infections in humans. PET affords the potential for sensitive infection detection deep within the body. Among PET-based approaches, antibiotic-based radiotracers, which often target key bacterial-specific enzymes, have considerable promise. One question for antibiotic radiotracers is whether antimicrobial resistance (AMR) reduces specific accumulation within bacteria, diminishing the predictive value of the diagnostic test.METHODSUsing a PET radiotracer based on the antibiotic trimethoprim (TMP), [11C]-TMP, we performed in vitro uptake studies in susceptible and drug-resistant bacterial strains and whole-genome sequencing (WGS) in selected strains to identify TMP resistance mechanisms. Next, we queried the NCBI database of annotated bacterial genomes for WT and resistant dihydrofolate reductase (DHFR) genes. Finally, we initiated a first-in-human protocol of [11C]-TMP in patients infected with both TMP-sensitive and TMP-resistant organisms to demonstrate the clinical feasibility of the tool.RESULTSWe observed robust [11C]-TMP uptake in our panel of TMP-sensitive and -resistant bacteria, noting relatively variable and decreased uptake in a few strains of P. aeruginosa and E. coli. WGS showed that the vast majority of clinically relevant bacteria harbor a WT copy of DHFR, targetable by [11C]-TMP, and that despite the AMR, these strains should be "imageable." Clinical imaging of patients with [11C]-TMP demonstrated focal radiotracer uptake in areas of infectious lesions.CONCLUSIONThis work highlights an approach to imaging bacterial infection in patients, which could affect our understanding of bacterial pathogenesis as well as our ability to better diagnose infections and monitor response to therapy.TRIAL REGISTRATIONClinicalTrials.gov NCT03424525.FUNDINGInstitute for Translational Medicine and Therapeutics, Burroughs Wellcome Fund, NIH Office of the Director Early Independence Award (DP5-OD26386), and University of Pennsylvania NIH T32 Radiology Research Training Grant (5T32EB004311-12).


Asunto(s)
Infecciones Bacterianas , Trimetoprim , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Bacterias , Infecciones Bacterianas/diagnóstico por imagen , Infecciones Bacterianas/tratamiento farmacológico , Radioisótopos de Carbono , Escherichia coli , Humanos , Trimetoprim/farmacología , Trimetoprim/uso terapéutico
5.
mBio ; 13(4): e0144222, 2022 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-35730903

RESUMEN

The intracellular parasite Toxoplasma gondii adapts to diverse host cell environments within a replicative compartment that is heavily decorated by secreted proteins. In an attempt to identify novel parasite secreted proteins that influence host cell activity, we identified and characterized a transmembrane dense granule protein dubbed GRA64 (TGME49_202620). We found that GRA64 is on the parasitophorous vacuolar membrane (PVM) and is partially exposed to the host cell cytoplasm in both tachyzoite and bradyzoite parasitophorous vacuoles. Using co-immunoprecipitation and proximity-based biotinylation approaches, we demonstrated that GRA64 appears to interact with components of the host endosomal sorting complexes required for transport (ESCRT). Genetic disruption of GRA64 does not affect acute Toxoplasma virulence or encystation in mice, as observed via tissue cyst burdens in mice during chronic infection. However, ultrastructural analysis of Δgra64 tissue cysts using electron tomography revealed enlarged vesicular structures underneath the cyst membrane, suggesting a role for GRA64 in organizing the recruitment of ESCRT proteins and subsequent intracystic vesicle formation. This study uncovers a novel host-parasite interaction that contributes to an emerging paradigm in which specific host ESCRT proteins are recruited to the limiting membranes (PVMs) of tachyzoite and bradyzoite vacuoles formed during acute and chronic Toxoplasma infection. IMPORTANCE Toxoplasma gondii is a widespread foodborne parasite that causes congenital disease and life-threatening complications in immunocompromised individuals. Part of this parasite's success lies in its ability to infect diverse organisms and host cells and to persist as a latent infection within parasite-constructed structures called tissue cysts. In this study, we characterized a protein that is secreted by T. gondii into its parasitophorous vacuole during intracellular infection, which we dub GRA64. On the vacuolar membrane, this protein is exposed to the host cell cytosol and interacts with specific host ESCRT proteins. Parasites lacking the GRA64 protein exhibit ultrastructural changes in tissue cysts during chronic infection. This study lays the foundation for future studies on the mechanics and consequences of host ESCRT-parasite protein interactions.


Asunto(s)
Toxoplasma , Toxoplasmosis , Animales , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Ratones , Proteínas Protozoarias/metabolismo , Toxoplasma/metabolismo , Toxoplasmosis/parasitología , Vacuolas/metabolismo
6.
FEMS Microbiol Ecol ; 98(5)2022 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-35383853

RESUMEN

Environmental pH is a critical parameter for maintenance of the gut microbiota. Here, the impact of pH on the gut microbiota luminal and mucosal community structure and short chain fatty acid (SCFA) production was evaluated in vitro, and data compiled to reveal a donor-independent response to an increase or decrease in environmental pH. The results found that raising environmental pH significantly increased luminal community richness and decreased mucosal community evenness. This corresponded with an increased abundance of Ruminococcaceae Ruminococcus and Erysipelotrichaceae Erysipelatoclostridium, and a decreased abundance of Coriobacteriaceae Collinsella and Enterobacteriaceae Shigella for both the luminal and mucosal communities. Total SCFA levels were significantly higher, primarily due to an increase in acetic and 2-methylbutanoic acids. Lowering pH decreased luminal community evenness and decreased mucosal community evenness and richness. This corresponded with an increased abundance of Lachnospiraceae Enterocloster, Veillonellaceae Megasphaera, Veillonellaceae Sporomusa, Erysipelotrichaceae Eubacterium, and Alcaligenaceae Sutterella, and decreased abundance of Odoribacteraceae Butyricimonas, Fusobacteriaceae Fusobacterium, Veillonellaceae Phascolarctobacterium, and multiple Enterobacteriaceae species for both the luminal and mucosal communities. Total SCFA levels were significantly lower, with an observed drop in acetic and propionic acids, and increased butyric and valeric acids. Taken together, these results indicate that alterations to environmental pH can modulate the gut microbiota community structure and function, and some changes may occur in a donor-independent manner.


Asunto(s)
Microbioma Gastrointestinal , Bacteroidetes , Ácidos Grasos Volátiles , Heces/microbiología , Firmicutes , Microbioma Gastrointestinal/fisiología , Concentración de Iones de Hidrógeno
7.
J Crohns Colitis ; 16(8): 1281-1292, 2022 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-35211723

RESUMEN

BACKGROUND AND AIMS: Perianal fistulising disease can affect up to 25% of patients with Crohn's disease [CD] and lead to significant morbidity. Although the role of the gut microbiota in inflammatory bowel disease [IBD] has been increasingly recognised, its role in fistula development has scarcely been studied. Here, we aimed to define the microbial signature associated with perianal fistulising CD in children. METHODS: A prospective observational study including children age 6-18 years with a diagnosis of perianal fistulising CD was conducted. Stool samples and rectal and perianal fistula swabs were collected. Stool samples and rectal swabs from children with CD without perianal disease and healthy children were included as comparison. Whole shotgun metagenomic sequencing was performed. RESULTS: A total of 31 children [mean age 15.5 ± 3.5 years] with perianal CD were prospectively enrolled. The fistula-associated microbiome showed an increase in alpha diversity and alteration in the abundance of several taxa compared with the rectal- and faecal-associated microbiome with key taxa belonging to the Proteobacteria phylum. Genes conferring resistance to the clinically used antibiotic regimen ciprofloxacin and metronidazole were found in the three sample types. In comparison with children without the perianal phenotype [N = 36] and healthy controls [N = 41], the mucosally-associated microbiome of children with perianal CD harboured a reduced butyrogenic potential. Linear discriminant analysis identified key taxa distinguishing the rectal mucosally-associated microbiome of children with perianal CD from children without this phenotype. CONCLUSIONS: The microbial community within CD-related anorectal fistula is compositionally and functionally unique. Taken together, these findings emphasise the need to better understand the ecosystem of the fistula milieu to guide development of novel microbiome-based strategies in this CD phenotype.


Asunto(s)
Enfermedad de Crohn , Fístula Rectal , Ciprofloxacina , Enfermedad de Crohn/complicaciones , Ecosistema , Humanos , Fístula Rectal/etiología , Resultado del Tratamiento
8.
Nat Cell Biol ; 23(12): 1255-1270, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34876687

RESUMEN

Circadian rhythms align physiological functions with the light-dark cycle through oscillatory changes in the abundance of proteins in the clock transcriptional programme. Timely removal of these proteins by different proteolytic systems is essential to circadian strength and adaptability. Here we show a functional interplay between the circadian clock and chaperone-mediated autophagy (CMA), whereby CMA contributes to the rhythmic removal of clock machinery proteins (selective chronophagy) and to the circadian remodelling of a subset of the cellular proteome. Disruption of this autophagic pathway in vivo leads to temporal shifts and amplitude changes of the clock-dependent transcriptional waves and fragmented circadian patterns, resembling those in sleep disorders and ageing. Conversely, loss of the circadian clock abolishes the rhythmicity of CMA, leading to pronounced changes in the CMA-dependent cellular proteome. Disruption of this circadian clock/CMA axis may be responsible for both pathways malfunctioning in ageing and for the subsequently pronounced proteostasis defect.


Asunto(s)
Factores de Transcripción ARNTL/genética , Proteínas CLOCK/metabolismo , Autofagia Mediada por Chaperones/fisiología , Relojes Circadianos/fisiología , Ritmo Circadiano/fisiología , Proteína 2 de la Membrana Asociada a los Lisosomas/genética , Envejecimiento/fisiología , Animales , Lisosomas/química , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fotoperiodo , Proteoma/genética , Proteostasis/fisiología , Privación de Sueño/fisiopatología , Transcripción Genética/genética
9.
J Clin Invest ; 131(14)2021 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-34101620

RESUMEN

Inhibitors of microsomal prostaglandin E synthase 1 (mPGES-1) are in the early phase of clinical development. Deletion of mPges-1 in mice confers analgesia, restrains atherogenesis, and fails to accelerate thrombogenesis, while suppressing prostaglandin E2 (PGE2), but increasing the biosynthesis of prostacyclin (PGI2). In low-density lipoprotein receptor-deficient (Ldlr-/-) mice, this last effect represents the dominant mechanism by which mPges-1 deletion restrains thrombogenesis, while suppression of PGE2 accounts for its antiatherogenic effect. However, the effect of mPges-1 depletion on blood pressure (BP) in this setting remains unknown. Here, we show that mPges-1 depletion significantly increased the BP response to salt loading in male Ldlr-/- mice, whereas, despite the direct vasodilator properties of PGI2, deletion of the I prostanoid receptor (Ipr) suppressed this response. Furthermore, combined deletion of the Ipr abrogated the exaggerated BP response in male mPges-1-/- mice. Interestingly, these unexpected BP phenotypes were not observed in female mice fed a high-salt diet (HSD). This is attributable to the protective effect of estrogen in Ldlr-/- mice and in Ipr-/- Ldlr-/- mice. Thus, estrogen compensates for a deficiency in PGI2 to maintain BP homeostasis in response to high salt in hyperlipidemic female mice. In male mice, by contrast, the augmented formation of atrial natriuretic peptide (ANP) plays a similar compensatory role, restraining hypertension and oxidant stress in the setting of Ipr depletion. Hence, men with hyperlipidemia on a HSD might be at risk of a hypertensive response to mPGES-1 inhibitors.


Asunto(s)
Presión Sanguínea , Homeostasis , Receptores de Epoprostenol/deficiencia , Caracteres Sexuales , Animales , Femenino , Masculino , Ratones , Ratones Noqueados , Prostaglandina-E Sintasas/genética , Prostaglandina-E Sintasas/metabolismo , Receptores de Epoprostenol/metabolismo , Receptores de LDL/genética , Receptores de LDL/metabolismo
10.
mBio ; 12(3)2021 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-34006649

RESUMEN

Our studies on novel cyst wall proteins serendipitously led us to the discovery that cyst wall and vacuolar matrix protein MAG1, first identified a quarter of a century ago, functions as a secreted immunomodulatory effector. MAG1 is a dense granular protein that is found in the parasitophorous vacuolar matrix in tachyzoite vacuoles and the cyst wall and matrix in bradyzoite vacuoles. In the current study, we demonstrated that MAG1 is secreted beyond the parasitophorous vacuole into the host cytosol in both tachyzoites and bradyzoites. Secretion of MAG1 gradually decreases as the parasitophorous vacuole matures, but prominent MAG1 puncta are present inside host cells even at 4 and 6 days following infection. During acute murine infection, Δmag1 parasites displayed significantly reduced virulence and dissemination. In the chronic stage of infection, Δmag1 parasites generated almost no brain cysts. To identify the mechanism behind the attenuated pathology seen with Δmag1 parasites, various immune responses were screened in vitro using bone marrow-derived macrophages (BMDM). Infection of BMDM with Δmag1 parasites induced a significant increase in interleukin 1ß (IL-1ß) secretion, which is a hallmark of inflammasome activation. Heterologous complementation of MAG1 in BMDM cells prevented this Δmag1 parasite-induced IL-1ß release, indicating that secreted MAG1 in host cytosol dampens inflammasome activation. Furthermore, knocking out GRA15 (an inducer of IL-1ß release) in Δmag1 parasites completely inhibited all IL-1ß release by host cells following infection. These data suggest that MAG1 has a role as an immunomodulatory molecule and that by suppressing inflammasome activation, it would favor survival of the parasite and the establishment of latent infection.IMPORTANCEToxoplasma gondii is an Apicomplexan that infects a third of humans, causing encephalitis in AIDS patients and intellectual disabilities in congenitally infected patients. We determined that one of the cyst matrix proteins, MAG1, which had been thought to be an innate structural protein, can be secreted into the host cell and suppress the host immune reaction. This particular immune reaction is initiated by another parasite-secreted protein, GRA15. The intricate balance of inflammasome activation by GRA15 and suppression by MAG1 protects mice from acute death while enabling parasites to disseminate and establish chronic cysts. Our finding contributes to our understanding of how parasites persist in the host and how T. gondii modulates the host immune system.


Asunto(s)
Antígenos de Protozoos/inmunología , Citosol/química , Factores Inmunológicos/inmunología , Proteínas Protozoarias/inmunología , Toxoplasma/inmunología , Toxoplasmosis/inmunología , Animales , Antígenos de Protozoos/análisis , Antígenos de Protozoos/biosíntesis , Antígenos de Protozoos/genética , Células Cultivadas , Citosol/metabolismo , Femenino , Humanos , Factores Inmunológicos/genética , Ratones , Ratones Endogámicos C57BL , Transporte de Proteínas , Proteínas Protozoarias/biosíntesis , Proteínas Protozoarias/genética , Toxoplasma/química , Toxoplasma/genética , Toxoplasmosis/parasitología
11.
PLoS Pathog ; 16(12): e1008771, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33370417

RESUMEN

The intracellular parasite Toxoplasma gondii infects a large proportion of humans worldwide and can cause adverse complications in the settings of immune-compromise and pregnancy. T. gondii thrives within many different cell types due in part to its residence within a specialized and heavily modified compartment in which the parasite divides, termed the parasitophorous vacuole. Within this vacuole, numerous proteins optimize intracellular survival following their secretion by the parasite. We investigated the contribution of one of these proteins, TgPPM3C, predicted to contain a PP2C-class serine/threonine phosphatase domain and previously shown to interact with the protein MYR1, an essential component of a putative vacuolar translocon that mediates effector export into the host cell. Parasites lacking the TgPPM3C gene exhibit a minor growth defect in vitro, are avirulent during acute infection in mice, and form fewer cysts in mouse brain during chronic infection. Phosphoproteomic assessment of TgPPM3C deleted parasite cultures demonstrated alterations in the phosphorylation status of many secreted vacuolar proteins including two exported effector proteins, GRA16 and GRA28, as well as MYR1. Parasites lacking TgPPM3C are defective in GRA16 and GRA28 export, but not in the export of other MYR1-dependant effectors. Phosphomimetic mutation of two GRA16 serine residues results in export defects, suggesting that de-phosphorylation is a critical step in the process of GRA16 export. These findings provide another example of the emerging role of phosphatases in regulating the complex environment of the T. gondii parasitophorous vacuole and influencing the export of specific effector proteins from the vacuolar lumen into the host cell.


Asunto(s)
Fosfoproteínas Fosfatasas/metabolismo , Toxoplasma/enzimología , Toxoplasmosis/metabolismo , Vacuolas/metabolismo , Factores de Virulencia/metabolismo , Animales , Interacciones Huésped-Patógeno/fisiología , Ratones , Transporte de Proteínas
12.
Infect Immun ; 88(6)2020 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-32152197

RESUMEN

Chagas disease is a major public health issue, affecting ∼10 million people worldwide. Transmitted by a protozoan named Trypanosoma cruzi, this infection triggers a chronic inflammatory process that can lead to cardiomyopathy (Chagas disease). Resolvin D1 (RvD1) is a novel proresolution lipid mediator whose effects on inflammatory diseases dampens pathological inflammatory responses and can restore tissue homeostasis. Current therapies are not effective in altering the outcome of T. cruzi infection, and as RvD1 has been evaluated as a therapeutic agent in various inflammatory diseases, we examined if exogenous RvD1 could modulate the pathogenesis of Chagas disease in a murine model. CD-1 mice infected with the T. cruzi Brazil strain were treated with RvD1. Mice were administered 3 µg/kg of body weight RvD1 intraperitoneally on days 5, 10, and 15 to examine the effect of RvD1 on acute disease or administered the same dose on days 60, 65, and 70 to examine its effects on chronic infection. RvD1 therapy increased the survival rate and controlled parasite replication in mice with acute infection and reduced the levels of interferon gamma and transforming growth factor ß (TGF-ß) in mice with chronic infection. In addition, there was an increase in interleukin-10 levels with RvD1 therapy in both mice with acute infection and mice with chronic infection and a decrease in TGF-ß levels and collagen content in cardiac tissue. Together, these data indicate that RvD1 therapy can dampen the inflammatory response, promote the resolution of T. cruzi infection, and prevent cardiac fibrosis.


Asunto(s)
Antiinflamatorios/administración & dosificación , Enfermedad de Chagas/microbiología , Ácidos Docosahexaenoicos/administración & dosificación , Interacciones Huésped-Patógeno/efectos de los fármacos , Trypanosoma cruzi/efectos de los fármacos , Animales , Enfermedad de Chagas/tratamiento farmacológico , Enfermedad de Chagas/mortalidad , Enfermedad de Chagas/patología , Modelos Animales de Enfermedad , Ecocardiografía , Fibrosis , Corazón , Leucocitos/efectos de los fármacos , Leucocitos/metabolismo , Leucocitos/patología , Ratones , Miocardio/metabolismo , Miocardio/patología , Tamaño de los Órganos , Índice de Severidad de la Enfermedad
13.
mBio ; 11(1)2020 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-32019789

RESUMEN

A characteristic of the latent cyst stage of Toxoplasma gondii is a thick cyst wall that forms underneath the membrane of the bradyzoite vacuole. Previously, our laboratory group published a proteomic analysis of purified in vitro cyst wall fragments that identified an inventory of cyst wall components. To further refine our understanding of the composition of the cyst wall, several cyst wall proteins were tagged with a promiscuous biotin ligase (BirA*), and their interacting partners were screened by streptavidin affinity purification. Within the cyst wall pulldowns, previously described cyst wall proteins, dense granule proteins, and uncharacterized hypothetical proteins were identified. Several of the newly identified hypothetical proteins were validated to be novel components of the cyst wall and tagged with BirA* to expand the model of the cyst wall interactome. Community detection of the cyst wall interactome model revealed three distinct clusters: a dense granule, a cyst matrix, and a cyst wall cluster. Characterization of several of the identified cyst wall proteins using genetic strategies revealed that MCP3 affects in vivo cyst sizes. This study provides a model of the potential protein interactions within the cyst wall and the groundwork to understand cyst wall formation.IMPORTANCE A model of the cyst wall interactome was constructed using proteins identified through BioID. The proteins within this cyst wall interactome model encompass several proteins identified in a prior characterization of the cyst wall proteome. This model provides a more comprehensive understanding of the composition of the cyst wall and may lead to insights on how the cyst wall is formed.


Asunto(s)
Pared Celular/metabolismo , Proteoma , Proteínas Protozoarias/metabolismo , Toxoplasma/metabolismo , Células Cultivadas , Proteómica , Proteínas Protozoarias/genética , Vacuolas
14.
mSphere ; 5(1)2020 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-32075884

RESUMEN

Toxoplasma gondii causes a chronic infection that affects a significant portion of the world's population, and this latent infection is the source of reactivation of toxoplasmosis. An attribute of the slowly growing bradyzoite stage of the parasite is the formation of a cyst within infected cells, allowing the parasite to escape the host's immune response. In this study, a new bradyzoite cyst matrix antigen (MAG) was identified through a hybridoma library screen. This cyst matrix antigen, matrix antigen 2 (MAG2), contains 14 tandem repeats consisting of acidic, basic, and proline residues. Immunoblotting revealed that MAG2 migrates at a level higher than its predicted molecular weight, and computational analysis showed that the structure of MAG2 is highly disordered. Cell fractionation studies indicated that MAG2 was associated with both insoluble and soluble cyst matrix material, suggesting that it interacts with the intracyst network (ICN). Examination of the kinetics of MAG2 within the cyst matrix using fluorescence recovery after photobleaching (FRAP) demonstrated that MAG2 does not readily diffuse within the cyst matrix. Kinetic studies of MAG1 demonstrated that this protein has different diffusion kinetics in tachyzoite and bradyzoite vacuoles and that its mobility is not altered in the absence of MAG2. In addition, deletion of MAG2 does not influence growth, cystogenesis, or cyst morphology.IMPORTANCE This report expands on the list of characterized Toxoplasma gondii cyst matrix proteins. Using fluorescence recovery after photobleaching (FRAP), we have shown that matrix proteins within the cyst matrix are not mainly in a mobile state, providing further evidence of how proteins behave within the cyst matrix. Understanding the proteins expressed during the bradyzoite stage of the parasite reveals how the parasite functions during chronic infection.


Asunto(s)
Antígenos de Protozoos/genética , Estadios del Ciclo de Vida/genética , Proteínas Protozoarias/química , Toxoplasma/genética , Animales , Antígenos de Protozoos/química , Hibridomas , Cinética , Ratones , Fotoblanqueo , Proteínas Protozoarias/genética , Toxoplasma/química , Toxoplasma/fisiología
15.
mBio ; 10(4)2019 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-31431557

RESUMEN

Microsporidia are opportunistic intracellular pathogens that can infect a wide variety of hosts ranging from invertebrates to vertebrates. During invasion, the microsporidian polar tube pushes into the host cell, creating a protective microenvironment, the invasion synapse, into which the sporoplasm extrudes. Within the synapse, the sporoplasm then invades the host cell, forming a parasitophorous vacuole (PV). Using a proteomic approach, we identified Encephalitozoon hellem sporoplasm surface protein 1 (EhSSP1), which localized to the surface of extruded sporoplasms. EhSSP1 was also found to interact with polar tube protein 4 (PTP4). Recombinant EhSSP1 (rEhSSP1) bound to human foreskin fibroblasts, and both anti-EhSSP1 and rEhSSP1 caused decreased levels of host cell invasion, suggesting that interaction of SSP1 with the host cell was involved in invasion. Coimmunoprecipitation (Co-IP) followed by proteomic analysis identified host cell voltage-dependent anion channels (VDACs) as EhSSP1 interacting proteins. Yeast two-hybrid assays demonstrated that EhSSP1 was able to interact with VDAC1, VDAC2, and VDAC3. rEhSSP1 colocalized with the host mitochondria which were associated with microsporidian PVs in infected cells. Transmission electron microscopy revealed that the outer mitochondrial membrane interacted with meronts and the PV membrane, mitochondria clustered around meronts, and the VDACs were concentrated at the interface of mitochondria and parasite. Knockdown of VDAC1, VDAC2, and VDAC3 in host cells resulted in significant decreases in the number and size of the PVs and a decrease in mitochondrial PV association. The interaction of EhSSP1 with VDAC probably plays an important part in energy acquisition by microsporidia via its role in the association of mitochondria with the PV.IMPORTANCE Microsporidia are important opportunistic human pathogens in immune-suppressed individuals, such as those with HIV/AIDS and recipients of organ transplants. The sporoplasm is critical for establishing microsporidian infection. Despite the biological importance of this structure for transmission, there is limited information about its structure and composition that could be targeted for therapeutic intervention. Here, we identified a novel E. hellem sporoplasm surface protein, EhSSP1, and demonstrated that it can bind to host cell mitochondria via host VDAC. Our data strongly suggest that the interaction between SSP1 and VDAC is important for the association of mitochondria with the parasitophorous vacuole during microsporidian infection. In addition, binding of SSP1 to the host cell is associated with the final steps of invasion in the invasion synapse.


Asunto(s)
Interacciones Huésped-Patógeno/fisiología , Microsporidios/metabolismo , Mitocondrias/microbiología , Canales Aniónicos Dependientes del Voltaje/metabolismo , Citoplasma , Encephalitozoon , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Técnicas de Silenciamiento del Gen , Silenciador del Gen , Humanos , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/genética , Proteómica , Canal Aniónico 1 Dependiente del Voltaje/genética , Canal Aniónico 2 Dependiente del Voltaje/genética , Canales Aniónicos Dependientes del Voltaje/genética
16.
mBio ; 10(2)2019 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-31040239

RESUMEN

The tissue cyst of Toxoplasma gondii, found in latent infection, serves a critical role in both transmission and reactivation of this organism. Within infected cells, slowly replicating parasites (bradyzoites) are surrounded by a cyst matrix, cyst wall, and cyst membrane. The cyst wall is clearly delineated by ultrastructural analysis; however, the composition and function of this layer in host-parasite interactions are not fully understood. In order to understand the composition of the cyst wall, a proteomic analysis of purified cyst wall fragments, that were enriched with Percoll gradients and subsequently immunoprecipitated with CST1 antibody, was performed. Known cyst wall proteins, such as CST1, BPK1, MCP4, MAG1, GRA2, GRA3, and GRA5, were identified in this preparation by liquid chromatography-tandem mass spectrometry (LC-MS/MS). In addition, dense granule proteins (GRAs) not previously shown to associate with the cyst wall, as well as uncharacterized hypothetical proteins, were identified in this cyst wall preparation. Several of these hypothetical cyst wall (CST) proteins were epitope tagged, and immunofluorescence assays confirmed their localization as novel cyst matrix and cyst wall proteins. Expression of two of these newly identified cyst wall proteins was eliminated by gene knockout (CST2-KO and CST3-KO). CST2-KO parasites were highly attenuated in virulence and did not establish detectable cyst burdens. This targeted proteomic approach allowed the identification of new components of the cyst wall that probably have roles in the parasite/host interface.IMPORTANCEToxoplasma gondii is a highly prevalent parasite worldwide that presents life-threatening risks to immunocompromised and pregnant individuals. Whereas the life stage responsible for acute infection can be treated, the life stage responsible for chronic infection is refractory to currently available therapeutics. Little is known about the protein composition of the cyst wall, an amorphous structure formed by parasites that is suspected to facilitate persistence within muscle and nervous tissue during chronic (latent) infection. By implementing a refined approach to selectively purify cyst wall fragments, we identified several known and novel cyst wall proteins from our sample preparations. We confirmed the localizations of several proteins from this data set and identified one that is involved in parasite virulence. These data will propel further studies on cyst wall structure and function, leading to therapeutic strategies that can eliminate the chronic infection stage.


Asunto(s)
Pared Celular/química , Proteoma/análisis , Proteínas Protozoarias/análisis , Esporas Protozoarias/química , Toxoplasma/química , Animales , Células Cultivadas , Centrifugación por Gradiente de Densidad , Cromatografía Liquida , Modelos Animales de Enfermedad , Técnicas de Inactivación de Genes , Humanos , Inmunoprecipitación , Ratones Endogámicos C57BL , Microscopía Fluorescente , Proteómica , Proteínas Protozoarias/genética , Espectrometría de Masas en Tándem , Toxoplasma/genética , Toxoplasmosis/parasitología , Toxoplasmosis/patología , Virulencia
17.
Microbes Infect ; 20(9-10): 466-476, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29287987

RESUMEN

Tachyzoites of the Apicomplexan Toxoplasma gondii cause acute infection, disseminate widely in their host, and eventually differentiate into a latent encysted form called bradyzoites that are found within tissue cysts. During latent infection, whenever transformation to tachyzoites occurs, any tachyzoites that develop are removed by the immune system. In contrast, cysts containing bradyzoites are sequestered from the immune system. In the absence of an effective immune response released organisms that differentiate into tachyzoites cause acute infection. Tissue cysts, therefore, serve as a reservoir for the reactivation of toxoplasmosis when the host becomes immunocompromised by conditions such as HIV infection, organ transplantation, or due to the impaired immune response that occurs when pathogens are acquired in utero. While tachyzoites and bradyzoites are well defined morphologically, there is no clear consensus on how interconversion occurs or what exact signal(s) mediate this transformation. Advances in research methods have facilitated studies on T. gondii bradyzoites providing important new insights into the biology of latent infection.


Asunto(s)
Enquistamiento de Parásito/fisiología , Toxoplasma/fisiología , Toxoplasmosis/parasitología , Animales , Regulación de la Expresión Génica , Interacciones Huésped-Parásitos , Humanos , Enquistamiento de Parásito/genética , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Toxoplasma/crecimiento & desarrollo
18.
mBio ; 8(4)2017 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-28851850

RESUMEN

In immunocompromised hosts, latent infection with Toxoplasma gondii can reactivate from tissue cysts, leading to encephalitis. A characteristic of T. gondii bradyzoites in tissue cysts is the presence of amylopectin granules. The regulatory mechanisms and role of amylopectin accumulation in this organism are not fully understood. The T. gondii genome encodes a putative glycogen phosphorylase (TgGP), and mutants were constructed to manipulate the activity of TgGP and to evaluate the function of TgGP in amylopectin storage. Both a stop codon mutant (Pru/TgGPS25stop [expressing a Ser-to-stop codon change at position 25 in TgGP]) and a phosphorylation null mutant (Pru/TgGPS25A [expressing a Ser-to-Ala change at position 25 in TgGp]) mutated at Ser25 displayed amylopectin accumulation, while the phosphorylation-mimetic mutant (Pru/TgGPS25E [expressing a Ser-to-Glu change at position 25 in TgGp]) had minimal amylopectin accumulation under both tachyzoite and bradyzoite growth conditions. The expression of active TgGPS25S or TgGPS25E restored amylopectin catabolism in Pru/TgGPS25A To understand the relation between GP and calcium-dependent protein kinase 2 (CDPK2), which was recently reported to regulate amylopectin consumption, we knocked out CDPK2 in these mutants. PruΔcdpk2/TgGPS25E had minimal amylopectin accumulation, whereas the Δcdpk2 phenotype in the other GP mutants and parental lines displayed amylopectin accumulation. Both the inactive S25A and hyperactive S25E mutant produced brain cysts in infected mice, but the numbers of cysts produced were significantly less than the number produced by the S25S wild-type GP parasite. Complementation that restored amylopectin regulation restored brain cyst production to the control levels seen in infected mice. These data suggest that T. gondii requires tight regulation of amylopectin expression for efficient production of cysts and persistent infections and that GP phosphorylation is a regulatory mechanism involved in amylopectin storage and utilization.IMPORTANCEToxoplasma gondii is an obligate intracellular parasite that causes disease in immune-suppressed individuals, as well as a fetopathy in pregnant women who acquire infection for the first time during pregnancy. This parasite can differentiate between tachyzoites (seen in acute infection) and bradyzoites (seen in latent infection), and this differentiation is associated with disease relapse. A characteristic of bradyzoites is that they contain cytoplasmic amylopectin granules. The regulatory mechanisms and the roles of amylopectin granules during latent infection remain to be elucidated. We have identified a role of T. gondii glycogen phosphorylase (TgGP) in the regulation of starch digestion and a role of posttranslational modification of TgGP, i.e., phosphorylation of Ser25, in the regulation of amylopectin digestion. By manipulating TgGP activity in the parasite with genome editing, we found that the digestion and storage of amylopectin due to TgGP activity are both important for latency in the brain.


Asunto(s)
Amilopectina/metabolismo , Encéfalo/parasitología , Glucógeno Fosforilasa/metabolismo , Toxoplasma/fisiología , Amilopectina/genética , Animales , Diferenciación Celular , Glucógeno/metabolismo , Interacciones Huésped-Patógeno , Ratones , Fosforilación , Procesamiento Proteico-Postraduccional , Toxoplasma/enzimología , Toxoplasmosis Animal/parasitología
19.
mBio ; 8(1)2017 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-28074022

RESUMEN

The protozoan intracellular parasite Toxoplasma gondii forms latent cysts in the central nervous system (CNS) and persists for the lifetime of the host. This cyst is cloaked with a glycosylated structure called the cyst wall. Previously, we demonstrated that a mucin-like glycoprotein, CST1, localizes to the cyst wall and confers structural rigidity on brain cysts in a mucin-like domain-dependent manner. The mucin-like domain of CST1 is composed of 20 units of threonine-rich tandem repeats that are O-GalNAc glycosylated. A family of enzymes termed polypeptide N-acetylgalactosaminyltransferases (ppGalNAc-Ts) initiates O-GalNAc glycosylation. To identify which isoforms of ppGalNAc-Ts are responsible for the glycosylation of the CST1 mucin-like domain and to evaluate the function of each ppGalNAc-T in the overall glycosylation of the cyst wall, all five ppGalNAc-T isoforms were deleted individually from the T. gondii genome. The ppGalNAc-T2 and -T3 deletion mutants produced various glycosylation defects on the cyst wall, implying that many cyst wall glycoproteins are glycosylated by T2 and T3. Both T2 and T3 glycosylate the CST1 mucin-like domain, and this glycosylation is necessary for CST1 to confer structural rigidity on the cyst wall. We established that T2 is required for the initial glycosylation of the mucin-like domain and that T3 is responsible for the sequential glycosylation on neighboring acceptor sites, demonstrating hierarchical glycosylation by two distinct initiating and filling-in ppGalNAc-Ts in an intact organism. IMPORTANCE: Toxoplasma gondii is an obligate intracellular parasite that infects a third of the world's population. It can cause severe congenital disease and devastating encephalitis in immunocompromised individuals. We identified two glycosyltransferases, ppGalNAc-T2 and -T3, which are responsible for glycosylating cyst wall proteins in a hierarchical fashion. This glycosylation confers structural rigidity on the brain cyst. Our studies provide new insights into the mechanisms of O-GalNAc glycosylation in T. gondii.


Asunto(s)
Glicoproteínas/metabolismo , Glicosilación , N-Acetilgalactosaminiltransferasas/metabolismo , Proteínas Protozoarias/metabolismo , Esporas Protozoarias/química , Toxoplasma/enzimología , Eliminación de Gen , N-Acetilgalactosaminiltransferasas/genética , Esporas Protozoarias/crecimiento & desarrollo , Toxoplasma/genética , Toxoplasma/crecimiento & desarrollo , Toxoplasma/metabolismo , Polipéptido N-Acetilgalactosaminiltransferasa
20.
mBio ; 7(3)2016 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-27247232

RESUMEN

UNLABELLED: Toxoplasma gondii is an obligate intracellular apicomplexan parasite that infects warm-blooded vertebrates, including humans. Asexual reproduction in T. gondii allows it to switch between the rapidly replicating tachyzoite and quiescent bradyzoite life cycle stages. A transient cyclic AMP (cAMP) pulse promotes bradyzoite differentiation, whereas a prolonged elevation of cAMP inhibits this process. We investigated the mechanism(s) by which differential modulation of cAMP exerts a bidirectional effect on parasite differentiation. There are three protein kinase A (PKA) catalytic subunits (TgPKAc1 to -3) expressed in T. gondii Unlike TgPKAc1 and TgPKAc2, which are conserved in the phylum Apicomplexa, TgPKAc3 appears evolutionarily divergent and specific to coccidian parasites. TgPKAc1 and TgPKAc2 are distributed in the cytomembranes, whereas TgPKAc3 resides in the cytosol. TgPKAc3 was genetically ablated in a type II cyst-forming strain of T. gondii (PruΔku80Δhxgprt) and in a type I strain (RHΔku80Δhxgprt), which typically does not form cysts. The Δpkac3 mutant exhibited slower growth than the parental and complemented strains, which correlated with a higher basal rate of tachyzoite-to-bradyzoite differentiation. 3-Isobutyl-1-methylxanthine (IBMX) treatment, which elevates cAMP levels, maintained wild-type parasites as tachyzoites under bradyzoite induction culture conditions (pH 8.2/low CO2), whereas the Δpkac3 mutant failed to respond to the treatment. This suggests that TgPKAc3 is the factor responsible for the cAMP-dependent tachyzoite maintenance. In addition, the Δpkac3 mutant had a defect in the production of brain cysts in vivo, suggesting that a substrate of TgPKAc3 is probably involved in the persistence of this parasite in the intermediate host animals. IMPORTANCE: Toxoplasma gondii is one of the most prevalent eukaryotic parasites in mammals, including humans. Parasites can switch from rapidly replicating tachyzoites responsible for acute infection to slowly replicating bradyzoites that persist as a latent infection. Previous studies have demonstrated that T. gondii cAMP signaling can induce or suppress bradyzoite differentiation, depending on the strength and duration of cAMP signal. Here, we report that TgPKAc3 is responsible for cAMP-dependent tachyzoite maintenance while suppressing differentiation into bradyzoites, revealing one mechanism underlying how this parasite transduces cAMP signals during differentiation.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico/genética , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Estadios del Ciclo de Vida/genética , Toxoplasma/enzimología , Toxoplasma/crecimiento & desarrollo , 1-Metil-3-Isobutilxantina/farmacología , Animales , Encéfalo/parasitología , Proteínas Quinasas Dependientes de AMP Cíclico/química , Prueba de Complementación Genética , Interacciones Huésped-Parásitos , Estadios del Ciclo de Vida/fisiología , Ratones , Mutación , Transducción de Señal , Toxoplasma/efectos de los fármacos , Toxoplasma/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA