RESUMEN
BACKGROUND AND PURPOSE: Activation of AMP-activated protein kinase (AMPK) is essential in maintaining the epithelial tight junction (TJ) barrier. Berberine, a phytochemical AMPK agonist, has been widely reported to ameliorate colitis. Berberine or AMPK activation inhibits cytoskeletal contraction induced by myosin light chain kinase (MLCK), thereby ameliorating TJ barrier defects. We previously found that swiprosin-1, an actin-binding protein, affects MLCK expression. Here, we aimed to reveal the role of swiprosin-1 in the regulation of AMPK/MLCK by berberine. METHODS: Caco-2 monolayer transfected with AMPKα1 (or swiprosin-1) siRNA was treated with berberine after being stimulated with TNFα/IFNγ to assess the effect on the TJ barrier. Intestinal epithelial conditional knockout mice for AMPKα1 (or swiprosin-1) were treated with berberine after experimental colitis to evaluate the effect on the TJ barrier. TJ integrity was evaluated by immunoblotting and immunofluorescence for ZO-1 and Occludin. RESULTS: The protection of berberine against TJ barrier damage was blocked by AMPK inhibitor or knockout of AMPKα1 in epithelial cells. Swiprosin-1 was distributed in colonic epithelial cells and upregulated in colitis. Knockout of swiprosin-1 in intestinal epithelial cells ameliorated TJ barrier damage and abolished the protective effect of berberine. Impaired assembly of TJ caused by overexpression of swiprosin-1 was alleviated by MLCK inhibitor, and inhibition of the MLCK pathway by berberine also required the presence of swiprosin-1. In addition, berberine downregulated swiprosin-1 expression in an AMPK-dependent manner. CONCLUSION: Swiprosin-1 may be a key intermediate molecule in the regulation of the AMPK/MLCK pathway by berberine to attenuate colitis-induced TJ barrier damage.
RESUMEN
This narrative review provides an overview of the evolving significance of lymphopenia in sepsis, emphasizing its critical function in this complex and heterogeneous disease. We describe the causal relationship of lymphopenia with clinical outcomes, sustained immunosuppression, and its correlation with sepsis prediction markers and therapeutic targets. The primary mechanisms of septic lymphopenia are highlighted. In addition, the paper summarizes various attempts to treat lymphopenia and highlights the practical significance of promoting lymphocyte proliferation as the next research direction.
Asunto(s)
Linfopenia , Sepsis , Humanos , Sepsis/complicaciones , Sepsis/fisiopatologíaRESUMEN
Eculizumab, a recombined humanized monoclonal antibody which possesses high affinity for the complement protein C5, is a therapeutic agent utilized in the treatment of atypical hemolytic uremic syndrome (aHUS) by inhibiting the terminal complement complex C5b-9. In a pediatric patient with aHUS of 14 months, the administration of eculizumab therapy was accompanied by the inclusion of meningococcal vaccine as part of the national immunization program. Notably, no other antibiotics were administered prior to or during the course of eculizumab treatment. Moreover, there were no occurrences of infusion reactions or meningococcal infections observed throughout the course of treatment. Due to the presence of anti-factor H antibodies and insufficient recovery, glucocorticoids and eculizumab were administered at week 0 and week 1, followed by the initiation of mycophenolate mofetil (MMF) at a dosage of 250â mg (approximately 548â mg/m2) per day starting from Day 10. Due to the recovered of complement antibody after 8 doses of eculizumab, the therapeutic interval was extended from once every 3 weeks to once a month since 9th administration. We experienced and successfully treated a rare case of aHUS with eculizumab in a 14-month-old Chinese pediatric patient.
RESUMEN
Chronic neutrophil leukemia (CNL) is a rare and life-threatening disease. Cases of CNL combined with lymphoma are rare. Here, we report a case of CNL with T-acute lymphoblastic leukemia/lymphoma (T-ALL/LBL) in a 28-year-old male. After a regimen of ruxolitinib, VICLP (Vincristine, Idarubicin, Cyclophosphamide, Prednisone, Peg-asparaginase) regimen, high-dose cytarabine, and methotrexate regimens, the patient's bone marrow condition partially resolved. However, when the disease relapsed four months later, despite attempts with selinexor, venetoclax, and CAG(aclarubicin hydrochloride, Algocytidine, Granulocyte Stimulating Factor) chemotherapy, the leukocytes and peripheral blood primitive cells reduced, but the bone marrow did not achieve remission. This pathogenesis may be related to microenvironmental immune escape under prolonged inflammatory stimulation and gene disruption affecting protein function due to colony-stimulating factor 3 receptor gene (CSF3R) mutations. For this type of disease, early intervention may delay disease progression.
Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica , Leucemia Neutrofílica Crónica , Humanos , Masculino , Adulto , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Leucemia Neutrofílica Crónica/genética , Leucemia Neutrofílica Crónica/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamiento farmacológico , Pirimidinas/uso terapéutico , Ciclofosfamida/uso terapéutico , Ciclofosfamida/administración & dosificación , Idarrubicina/administración & dosificación , Vincristina/uso terapéutico , Vincristina/administración & dosificación , Nitrilos/uso terapéutico , Pirazoles/uso terapéutico , Prednisona/uso terapéutico , Prednisona/administración & dosificación , Receptores del Factor Estimulante de Colonias/genética , Citarabina/uso terapéutico , Citarabina/administración & dosificación , Asparaginasa/uso terapéutico , Metotrexato/uso terapéutico , PolietilenglicolesRESUMEN
PURPOSE: Delirium is linked to brain abnormalities, yet the role of the glymphatic system is not well understood. This study aims to examine alterations in brain physiology in delirium by using diffusion-tensor imaging (DTI) to assess water diffusion along the perivascular space (ALPS) and to explore its correlation with clinical symptoms. METHODS: We examined 15 patients with delirium and 15 healthy controls, measuring water diffusion metrics along the x-, y-, and z-axes in both projection and association fibers to determine the DTI-ALPS index. We used a general linear model, adjusted for age and sex, to compare the DTI-ALPS index between groups. We also investigated the relationship between the DTI-ALPS index and clinical symptoms using partial correlations. RESULTS: Patients with delirium exhibited significantly lower DTI-ALPS indices compared to healthy controls (1.25 ± 0.15 vs. 1.38 ± 0.10, t = 2.903, p = 0.007; 1.27 ± 0.16 vs. 1.39 ± 0.08, 1.22 ± 0.16 vs. 1.37 ± 0.14, t = 2.617, p = 0.014; t = 2.719, p = 0.011; respectively). However, there was no significant correlation between the DTI-ALPS index and clinical symptoms. CONCLUSION: Our findings indicate a decreased DTI-ALPS index in patients with delirium, suggesting potential alterations in brain physiology that may contribute to the pathophysiology of delirium. This study provides new insights into the mechanisms underlying delirium.
Asunto(s)
Delirio , Imagen de Difusión Tensora , Humanos , Delirio/diagnóstico por imagen , Femenino , Masculino , Imagen de Difusión Tensora/métodos , Anciano , Estudios de Casos y Controles , Sistema Glinfático/diagnóstico por imagen , Persona de Mediana EdadRESUMEN
BACKGROUND: Sepsis-associated coagulopathy specifically refers to widespread systemic coagulation activation accompanied by a high risk of hemorrhage and organ damage, which in severe cases manifests as disseminated intravascular coagulation (DIC), or even develops into multiple organ dysfunction syndrome (MODS). The complement system and the coagulation system as the main columns of innate immunity and hemostasis, respectively, undergo substantial activation after sepsis. SUMMARY: Dysfunction of the complement, coagulation/fibrinolytic cascades caused by sepsis leads to "thromboinflammation," which ultimately amplifies the systemic inflammatory response and accelerates the development of MODS. Recent studies have revealed that massive activation of the complement system exacerbates sepsis-induced coagulation and even results in DIC, which suggests that inhibition of complement activation may have therapeutic potential in the treatment of septic coagulopathy. KEY MESSAGES: Sepsis-associated thrombosis involves the upregulation or activation of procoagulant factors, down-regulation or inactivation of anticoagulant factors, and impairment of the fibrinolytic mechanism. This review aims to summarize the latest literature and analyze the underlying molecular mechanisms of the activation of the complement system on the abnormal coagulation cascades in sepsis.
Asunto(s)
Activación de Complemento , Sepsis , Humanos , Sepsis/inmunología , Activación de Complemento/inmunología , Animales , Coagulación Sanguínea , Coagulación Intravascular Diseminada/inmunología , Coagulación Intravascular Diseminada/etiología , Inmunidad Innata , Proteínas del Sistema Complemento/inmunología , Proteínas del Sistema Complemento/metabolismo , Insuficiencia Multiorgánica/inmunología , Insuficiencia Multiorgánica/etiología , Fibrinólisis , Trastornos de la Coagulación Sanguínea/inmunología , Trastornos de la Coagulación Sanguínea/etiología , Trombosis/inmunología , Trombosis/etiologíaRESUMEN
EFHD2 (EF-hand domain family, member D2) has been identified as a calcium-binding protein with immunomodulatory effects. In this study, we characterized the phenotype of Efhd2-deficient mice in sepsis and examined the biological functions of EFHD2 in peripheral T cell activation and T helper (Th) cell differentiation. Increased levels of EFHD2 expression accompanied peripheral CD4+ T cell activation in the early stages of sepsis. Transcriptomic analysis indicated that immune response activation was impaired in Efhd2-deficient CD4+ T cells. Further, Efhd2-deficient CD4+ T cells isolated from the spleen of septic mice showed impaired T cell receptor (TCR)-induced Th differentiation, especially Th1 and Th17 differentiation. In vitro data also showed that Efhd2-deficient CD4+ T cells exhibit impaired Th1 and Th17 differentiation. In the CD4+ T cells and macrophages co-culture model for antigen presentation, the deficiency of Efhd2 in CD4+ T cells resulted in impaired formation of immunological synapses. In addition, Efhd2-deficient CD4+ T cells exhibited reduced levels of phospho-LCK and phospho-ZAP70, and downstream transcription factors including Nfat, Nfκb and Nur77 following TCR engagement. In summary, EFHD2 may promote TCR-mediated T cell activation subsequent Th1 and Th17 differentiation in the early stages of sepsis by regulating the intensity of TCR complex formation.
Asunto(s)
Proteínas de Unión al Calcio , Diferenciación Celular , Activación de Linfocitos , Receptores de Antígenos de Linfocitos T , Sepsis , Transducción de Señal , Animales , Masculino , Ratones , Proteínas de Unión al Calcio/metabolismo , Proteínas de Unión al Calcio/genética , Células Cultivadas , Sinapsis Inmunológicas/metabolismo , Sinapsis Inmunológicas/inmunología , Activación de Linfocitos/inmunología , Macrófagos/inmunología , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores de Antígenos de Linfocitos T/metabolismo , Receptores de Antígenos de Linfocitos T/genética , Sepsis/inmunología , Linfocitos T Colaboradores-Inductores/inmunología , Células TH1/inmunología , Células Th17/inmunologíaRESUMEN
BACKGROUND AND HYPOTHESIS: Despite the well-documented structural and functional brain changes in schizophrenia, the potential role of glymphatic dysfunction remains largely unexplored. This study investigates the glymphatic system's function in schizophrenia, utilizing diffusion tensor imaging (DTI) to analyze water diffusion along the perivascular space (ALPS), and examines its correlation with clinical symptoms. STUDY DESIGN: A cohort consisting of 43 people with schizophrenia and 108 healthy controls was examined. We quantified water diffusion metrics along the x-, y-, and z-axis in both projection and association fibers to derive the DTI-ALPS index, a proxy for glymphatic activity. The differences in the ALPS index between groups were analyzed using a 2-way ANCOVA controlling for age and sex, while partial correlations assessed the association between the ALPS index and clinical variables. STUDY RESULTS: People with schizophrenia showed a significantly reduced DTI-ALPS index across the whole brain and within both hemispheres (Fâ =â 9.001, Pâ =â .011; Fâ =â 10.024, Pâ =â .011; Fâ =â 5.927, Pâ =â .044; false discovery rate corrected), indicating potential glymphatic dysfunction in schizophrenia. The group by cognitive performance interaction effects on the ALPS index were not observed. Moreover, a lower ALPS index was associated with poorer cognitive performance on specific neuropsychological tests in people with schizophrenia. CONCLUSION: Our study highlights a lower ALPS index in schizophrenia, correlated with more pronounced cognitive impairments. This suggests that glymphatic dysfunction may contribute to the pathophysiology of schizophrenia, offering new insights into its underlying mechanisms.
Asunto(s)
Disfunción Cognitiva , Imagen de Difusión Tensora , Sistema Glinfático , Esquizofrenia , Humanos , Esquizofrenia/fisiopatología , Esquizofrenia/diagnóstico por imagen , Masculino , Femenino , Disfunción Cognitiva/fisiopatología , Disfunción Cognitiva/etiología , Disfunción Cognitiva/diagnóstico por imagen , Adulto , Sistema Glinfático/fisiopatología , Sistema Glinfático/diagnóstico por imagen , Persona de Mediana Edad , Estudios de CohortesRESUMEN
OBJECTIVE: Hemifacial spasm (HFS) is a movement disorder characterized by involuntary muscle contractions on one side of the face. It is associated with disturbances in the brain's functional architecture. Despite this, the structural alterations in the brain related to HFS remain poorly understood. In this study, we investigated the cortical morphology changes in patients with HFS compared to healthy controls (HCs). METHODS: We analyzed 3D T1-weighted MRI images from 33 patients with left-sided primary HFS and 33 age- and sex-matched HCs. Measurements of cortical thickness (CTh), sulcal depth, local gyrification index (lGI), and fractal dimension were taken using a computational anatomy toolbox. A general linear model, accounting for age, gender, and total brain volume, was applied for statistical analyses. Significant clusters were then assessed for correlations with clinical parameters. RESULTS: The HFS patients displayed several cortical abnormalities when compared to HCs, including reduced CTh in the contralateral precentral gyrus and left orbitofrontal cortex, decreased sulcal depth in the left orbitofrontal cortex, and increased lGI in the right insula and superior temporal cortex. However, fractal dimension did not differ significantly between the groups. Additionally, in HFS patients, a notable negative correlation was found between the sulcal depth in the left orbitofrontal cortex and the Beck Depression Inventory-II scores. CONCLUSIONS: Our findings reveal that HFS is associated with specific surface-based morphological changes in the brain. These alterations contribute to a deeper understanding of the neurophysiological mechanisms involved in HFS and may have implications for future research and treatment strategies.
Asunto(s)
Corteza Cerebral , Espasmo Hemifacial , Imagen por Resonancia Magnética , Humanos , Espasmo Hemifacial/fisiopatología , Espasmo Hemifacial/diagnóstico por imagen , Espasmo Hemifacial/patología , Femenino , Masculino , Persona de Mediana Edad , Corteza Cerebral/diagnóstico por imagen , Corteza Cerebral/patología , Corteza Cerebral/fisiopatología , Adulto , Anciano , Imagenología TridimensionalRESUMEN
Most reported members of Microascaceae that have been reported originate from the terrestrial environment, where they act as saprobes or plant pathogens. However, our understanding of their species diversity and distribution in the marine environment remains vastly limited, with only 22 species in nine genera having been reported so far. A survey of the fungal diversity in intertidal areas of China's mainland has revealed the discovery of several Microascaceae strains from 14 marine algae and 15 sediment samples. Based on morphological characteristics and LSU-ITS-tef1-tub2 multilocus phylogeny using Bayesian inference and maximum likelihood methods, 48 strains were identified as 18 species belonging to six genera. Among these, six new species were discovered: Gamsia sedimenticola, Microascus algicola, M. gennadii, Scedosporium ellipsosporium, S. shenzhenensis, and S. sphaerospermum. Additionally, the worldwide distribution of the species within this family across various marine habitats was briefly reviewed and discussed. Our study expands the knowledge of species diversity and distribution of Microascaceae in the marine environment.
RESUMEN
PURPOSE: Spinocerebellar ataxia type 2 (SCA2) is a progressive neurodegenerative disorder characterized by cerebellar atrophy. However, studies to elucidate the longitudinal progression of the neuropathology are limited. We sought to identify brain macrostructural and microstructural alterations in patients with SCA2 using fixel-based analysis (FBA) to better understand its distribution patterns and progression. METHODS: We enrolled 9 patients with SCA2 and 16 age- and gender-matched controls. Longitudinal clinical and imaging data were collected at baseline, and 3.5 years later. Fiber density (FD), fiber-bundle cross-section (FC), and a combination of FD and FC (FDC) were calculated. The paired t-test was used to examine longitudinal differences. The associations between fixel-based metrics and clinical variables were explored in SCA2 patients. RESULTS: At baseline, patients with SCA2 displayed multiple white matter tracts with significantly decreased FD, FC, and FDC in the corticospinal tract, cerebellar peduncles, brainstem, corpus callosum, thalamus, striatum, and prefrontal cortex, compared to controls. Over time, many of these macrostructural and microstructural alterations progressed, manifesting lower FD, FC, and FDC in corticospinal tract, middle cerebellar peduncle, brainstem, striatum, fornix, and cingulum. No significant brain white matter alterations were found in the healthy controls over time. There was no association between the FBA-derived metrics and clinical variables in SCA2. CONCLUSION: This study provides evidence of brain macrostructural and microstructural alterations and of progression over time in SCA2. The FBA-derived metrics may serve as potential biomarkers of SCA2 progression.
Asunto(s)
Ataxias Espinocerebelosas , Sustancia Blanca , Humanos , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/patología , Ataxias Espinocerebelosas/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Cerebelo/patología , Tronco Encefálico/patología , Imagen de Difusión por Resonancia Magnética/métodosRESUMEN
PURPOSE: Neuroimaging studies employing analyses dependent on regional assumptions and specific neuronal circuits could miss characteristics of whole-brain structural connectivity critical to the pathophysiology of fibromyalgia (FM). This study applied the whole-brain graph-theoretical approach to identify whole-brain structural connectivity disturbances in FM. METHODS: This cross-sectional study used probabilistic diffusion tractography and graph theory analysis to evaluate the topological organization of brain white matter networks in 20 patients with FM and 20 healthy controls (HCs). The relationship between brain network metrics and clinical variables was evaluated. RESULTS: Compared with HCs, FM patients had lower clustering coefficient, local efficiency, hierarchy, synchronization, and higher normalized characteristic path length. Regionally, patients demonstrated a significant reduction in nodal efficiency and centrality; these regions were mainly located in the prefrontal, temporal cortex, and basal ganglia. The network-based statistical analysis (NBS) identified decreased structural connectivity in a subnetwork of prefrontal cortex, basal ganglia, and thalamus in FM. There was no correlation between network metrics and clinical variables (false discovery rate corrected). CONCLUSIONS: The current research demonstrated disrupted topological architecture of white matter networks in FM. Our results suggested compromised neural integration and segregation and reduced structural connectivity in FM.
Asunto(s)
Fibromialgia , Sustancia Blanca , Humanos , Sustancia Blanca/diagnóstico por imagen , Estudios Transversales , Fibromialgia/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Imagen de Difusión Tensora/métodosRESUMEN
PURPOSE: The glymphatic system is a fluid exchange pathway that clears waste products that is crucial for the maintenance of brain homeostasis. However, the exact role it plays in the emergence of fibromyalgia (FM) is still not fully understood. Here, we explored the changes in non-invasive MRI proxy probably related to the glymphatic function in FM patients, and explored brain-behavior relationships. METHODS: A total of 40 participants, consisting of 20 individuals with FM and 20 healthy controls (HCs), were included in the study. The participants underwent structural T1-weighted MRI, diffusion tensor imaging (DTI), and clinical assessment. The data was obtained from an open access dataset. The study compared non-invasive MRI indices, including choroid plexus (CP) volume and DTI analysis along the perivascular space (ALPS), between the FM and HC groups. Furthermore, correlation analysis was conducted to determine the correlation between clinical parameters and both CP volume and DTI-ALPS index. RESULTS: Patients with FM had significantly higher CP volume and a lower DTI-ALPS index than HCs adjusting for age and intracranial volume. Higher CP volume was associated with lower DTI-ALPS index, and longer disease duration. CONCLUSION: Our findings demonstrate aberrant glymphatic function in FM, and that dysfunction in the brain glymphatic system may play a role in the neural mechanisms underlying FM.
Asunto(s)
Fibromialgia , Sistema Glinfático , Humanos , Imagen de Difusión Tensora , Plexo Coroideo/diagnóstico por imagen , Fibromialgia/diagnóstico por imagen , Imagen por Resonancia Magnética , HipertrofiaRESUMEN
Glioblastoma has been extensively studied due to its high mortality and short survival. The evolution mechanism of tumor-associated macrophages (TAMs) to Glioma-associated microglia and macrophages (GAMs) in the tumor microenvironment (TME) remains to be elucidated. The tumor cell-to-cell interaction patterns have not been well defined yet. The EF-Hand Domain Family Member D2 (EFHD2) has been reported to be differentially expressed as an immunomodulatory molecule in a variety of cancers. But large-scale clinical data from multiple ethnic communities have not been used to investigate the role of EFHD2 in glioma. RNA-seq data from 313 or 657 glioma patients from the Chinese Glioma Genome Atlas (CGGA) database and 603 glioma patients from the Cancer Genome Atlas (TCGA) database were analyzed retrospectively. Cell localization was performed using single-cell sequencing data from the CGGA database and the GSE131928 dataset. Mouse glioma cell lines and primary macrophages isolated from Efhd2 knockout mice were co-cultured to validate the immunomodulatory effects of EFHD2 on macrophages and the remodeling of TME of glioblastoma. EFHD2 is enriched in high-grade gliomas, isocitrate dehydrogenase wild-type, and 1p/19q non-co-deficient gliomas. It is a potential biomarker of glioma-proneuronal subtypes and an independent prognostic factor for overall survival in patients with malignant glioblastoma. EFHD2 regulates the monocyte-macrophage system function and positively correlates with immunosuppressive checkpoints. Further experimental data demonstrates that Efhd2 influences the polarization state of GAMs and inhibits the secretion of TGF-ß1. In vitro experiments have revealed that macrophages lacking Efhd2 suppress the vitality of two glioma cell lines and decelerate the growth of glioma xenografts. In conclusion, EFHD2 promises to be a key target for TME-related immunotherapy.
RESUMEN
BACKGROUND: Micronutrient administration that contributes to antioxidant defense has been extensively studied in critically ill patients, but consensus remains elusive. Selenium and vitamin E are two important micronutrients that have synergistic antioxidant effects. This meta-analysis aimed to assess the effect of selenium or vitamin E administration alone and the combination of both on clinical outcomes in patients hospitalized in the ICU. METHODS: After electronic searches on PubMed, Embase, Cochrane Library, Web of Science, China National Knowledge Infrastructure (CNKI), SinoMed, VIP database and Wanfang data, initially 1767 papers were found, and 30 interventional studies were included in this analysis. We assessed the risk-difference between treatment and control (standard treatment) groups by pooling available data on length of stay (ICU length of stay and hospital length of stay), mortality (ICU mortality, hospital mortality, 28-day mortality, 6-month mortality and all-cause mortality), duration of mechanical ventilation, adverse events and new infections. RESULTS: By analyzing the included studies, we found no significant effect of selenium administration alone on mortality, mechanical ventilation duration, or adverse events in ICU patients. However, after excluding studies with high heterogeneity, the meta-analysis showed that selenium alone reduced the length of hospital stay (MD: -1.38; 95% CI: -2.52, -0.23; I-square: 0%). Vitamin E administration alone had no significant effect on mortality, duration of mechanical ventilation, or adverse events in ICU patients. However, after excluding studies with high heterogeneity, the meta-analysis showed that vitamin E alone could reduce the length of ICU stay (MD: -1.27; 95% CI: -1.86, -0.67; I-square: 16%). Combined administration of selenium and vitamin E had no significant effect on primary outcomes in ICU patients. CONCLUSIONS: Selenium administration alone may shorten the length of hospital stay, while vitamin E alone may reduce the length of ICU stay. The putative synergistic beneficial effect of combined administration of selenium and vitamin E in ICU patients has not been observed, but more clinical studies are pending to confirm it further.
Asunto(s)
Selenio , Oligoelementos , Humanos , Vitamina E , Antioxidantes , Micronutrientes , Unidades de Cuidados IntensivosRESUMEN
[This corrects the article DOI: 10.3389/fphar.2023.1170637.].
RESUMEN
Morphine has a strong analgesic effect and is suitable for various types of pain, so it is widely used. But long-term usage of morphine can lead to drug tolerance, which limits its clinical application. The complex mechanisms underlying the development of morphine analgesia into tolerance involve multiple nuclei in the brain. Recent studies reveal the signaling at the cellular and molecular levels as well as neural circuits contributing to morphine analgesia and tolerance in the ventral tegmental area (VTA), which is traditionally considered a critical center of opioid reward and addiction. Existing studies show that dopamine receptors and µ-opioid receptors participate in morphine tolerance through the altered activities of dopaminergic and/or non-dopaminergic neurons in the VTA. Several neural circuits related to the VTA are also involved in the regulation of morphine analgesia and the development of drug tolerance. Reviewing specific cellular and molecular targets and related neural circuits may provide novel precautionary strategies for morphine tolerance.
Asunto(s)
Analgesia , Morfina , Humanos , Morfina/farmacología , Área Tegmental Ventral/fisiología , Analgésicos Opioides/farmacología , Dolor/tratamiento farmacológicoRESUMEN
Necrotizing enterocolitis (NEC) is one of the most fatal diseases in premature infants. Damage to the intestinal epithelial barrier (IEB) is an important event in the development of intestinal inflammation and the evolution of NEC. The intestinal epithelial monolayer formed by the tight arrangement of intestinal epithelial cells (IECs) constitutes the functional IEB between the organism and the extra-intestinal environment. Programmed death and regenerative repair of IECs are important physiological processes to maintain the integrity of IEB function in response to microbial invasion. However, excessive programmed death of IECs leads to increased intestinal permeability and IEB dysfunction. Therefore, one of the most fundamental questions in the field of NEC research is to reveal the pathological death process of IECs, which is essential to clarify the pathogenesis of NEC. This review focuses on the currently known death modes of IECs in NEC mainly including apoptosis, necroptosis, pyroptosis, ferroptosis, and abnormal autophagy. Furthermore, we elaborate on the prospect of targeting IECs death as a treatment for NEC based on exciting animal and clinical studies.
RESUMEN
Metabolic dysfunction-associated fatty liver disease (MAFLD) is a phenotype of liver diseases associated with metabolic syndrome. The pathogenesis MAFLD remains unclear. The liver maintains is located near the intestine and is physiologically interdependent with the intestine via metabolic exchange and microbial transmission, underpinning the recently proposed "oral-gut-liver axis" concept. However, little is known about the roles of commensal fungi in the disease development. This study aimed to characterize the alterations of oral and gut mycobiota and their roles in MAFLD. Twenty-one MAFLD participants and 20 healthy controls were enrolled. Metagenomics analyses of saliva, supragingival plaques, and feces revealed significant alterations in the gut fungal composition of MAFLD patients. Although no statistical difference was evident in the oral mycobiome diversity within MAFLD and healthy group, significantly decreased diversities were observed in fecal samples of MAFLD patients. The relative abundance of one salivary species, five supragingival species, and seven fecal species was significantly altered in MAFLD patients. Twenty-two salivary, 23 supragingival, and 22 fecal species were associated with clinical parameters. Concerning the different functions of fungal species, pathways involved in metabolic pathways, biosynthesis of secondary metabolites, microbial metabolism in diverse environments, and carbon metabolism were abundant both in the oral and gut mycobiomes. Moreover, different fungal contributions in core functions were observed between MAFLD patients and the healthy controls, especially in the supragingival plaque and fecal samples. Finally, correlation analysis between oral/gut mycobiome and clinical parameters identified correlations of certain fungal species in both oral and gut niches. Particularly, Mucor ambiguus, which was abundant both in saliva and feces, was positively correlated with body mass index, total cholesterol, low-density lipoprotein, alanine aminotransferase, and aspartate aminotransferase, providing evidence of a possible "oral-gut-liver" axis. The findings illustrate the potential correlation between core mycobiome and the development of MAFLD and could propose potential therapeutic strategies.
Asunto(s)
Microbioma Gastrointestinal , Micobioma , Enfermedad del Hígado Graso no Alcohólico , Humanos , Hongos/genética , Heces/microbiología , SalivaRESUMEN
Gut microbiota is of great importance in human health, and its roles in the maintenance of skeletal homeostasis have long been recognized as the "gut-bone axis." Recent evidence has indicated intercorrelations between gut microbiota, endocrine system and bone metabolism. This review article discussed the complex interactions between gut microbiota and bone metabolism-related hormones, including sex steroids, insulin-like growth factors, 5-hydroxytryptamine, parathyroid hormone, glucagon-like peptides, peptide YY, etc. Although the underlying mechanisms still need further investigation, the regulatory effect of gut microbiota on bone health via interplaying with endocrine system may provide a new paradigm for the better management of musculoskeletal disorders.