Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 951: 175361, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-39117209

RESUMEN

The prevalence of microplastics (MPs, <5 mm) in natural environments presents a formidable global environmental threat MPs can be found from the Arctic to Antarctica, including glaciers. Despite their widespread distribution, studies on MP accumulation in apex predators inhabiting Polar Regions remain limited. The objective of this study was to conduct a comprehensive examination, for the first time, of MP bioaccumulation in various organs and tissue of Adélie penguins. This investigation comprehends the gastrointestinal tract (GIT), scat, internal organ (lung, trachea, spleen, and liver) and tissue (muscle) samples collected from Svenner Island, Antarctica during the 39th Indian expedition to Antarctica in 2019-2020. Our analyses revealed the presence of 34 MPs across the GIT, scat, lung, and trachea samples, with no MPs detected in muscle, spleen, or liver tissues. Blue-colored microfibers (>50 %) and MPs smaller than 1 mm (38 %) in size were prominently observed. Polymer characterization utilizing µ-FTIR spectroscopy identified low-density polyethylene (LDPE) (~63 %) as the predominant polymer type. The accumulation of MP fibers in the gastrointestinal tract and scat of Adélie penguins may originate from marine ambient media and prey organisms. Furthermore, the presence of LDPE fibers in the trachea and lungs likely occurred through inhalation and subsequent deposition of MPs originating from both local and long-range airborne sources. The identification of fibers ranging between 20 and 100 µm within the trachea suggests a plausible chance of cellular deposition of MPs. Overall our findings provide valuable insights into the organ-specific accumulation of MPs in apex predators. Adélie penguins emerge as promising environmental bio-monitoring species, offering insights into the potential trophic transfer of MPs within frigid environments.


Asunto(s)
Monitoreo del Ambiente , Microplásticos , Spheniscidae , Animales , Spheniscidae/metabolismo , Regiones Antárticas , Microplásticos/análisis , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/metabolismo , Islas , Bioacumulación
2.
Biol Trace Elem Res ; 200(10): 4550-4569, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34860329

RESUMEN

Honey is a natural substance produced by honeybees from the nectar or secretion of flowering plants. Along with the botanical and geographical origin, several environmental factors also play a major role in determining the characteristics of honey. The aim of this study is to determine and compare the elemental concentration of various macro and trace elements in apiary and wild honeys collected from different parts of Indian Sundarbans. The elemental analysis was performed in inductively coupled plasma optical emission spectroscopy preceded by microwave digestion method. The concentrations of 19 elements (Ag, Al, As, B, Ca, Cd, Co, Cr, Cu, Fe, K, Li, Mg, Mn, Na, Ni, Pb, Se and Zn) were investigated from thirteen locations of Indian Sundarbans. This comparative study shows in wild honey samples, the concentration of K was highest followed by Ca, Mg and Na and Zn was lowest among all. In contrast, in apiary honey samples, Ca had maximum concentration followed by K, Mg and Na and Ag had minimum among all. The elemental concentration in honey from apiary was either equal or higher than their wild counterpart. The results of the factor analysis of PCA algorithm for wild and apiary honey samples were highly variable which implies that the elements are not coming from the same origin. The concentration of element was found to be highly variable across sites and across sources of honey samples.


Asunto(s)
Miel , Oligoelementos , Animales , Abejas , Miel/análisis , Iones , Microondas , Análisis Espectral , Oligoelementos/análisis
3.
Mar Pollut Bull ; 173(Pt A): 113017, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34872165

RESUMEN

The study represents in vitro chemometric approach for assessing the heavy metal pollution in Indian Sundarbans. Physio-chemical and elemental characterisation of the sediment samples of Indian Sundarbans had shown high enrichments of toxic metal ions. It was characterised by elevated enrichment factors (2.16-10.12), geo-accumulation indices (0.03 -1.21), contamination factors (0.7-3.43) and pollution load indices (1.0-1.25) which showed progressive sediment quality deterioration and ecotoxicological risk due to metal ions contamination. The physio-chemical parameters of the sediments were replicated and computational chemometric modeling was utilized to assess fungal metabolic growth. All the fungi isolates had shown maximum metabolic activity in high temperature, alkaline pH, and high salinity. Further, the fungal metabolic activity was assessed in different gradient of heavy metal concentration. The significant deterioration of biochemical marker with increasing concentration of heavy metal indicates the status of the microbial health due to toxic metal pollution in the mangrove habitat.


Asunto(s)
Metales Pesados , Contaminantes Químicos del Agua , Biomarcadores , Quimiometría , Monitoreo del Ambiente , Hongos , Sedimentos Geológicos , Metales Pesados/análisis , Contaminantes Químicos del Agua/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...