Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Chem Mater ; 36(1): 425-438, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38222935

RESUMEN

Higher adducts of a fullerene, such as the bis-adduct of PCBM (bis-PCBM), can be used to achieve shallower molecular orbital energy levels than, for example, PCBM or C60. Substituting the bis-adduct for the parent fullerene is useful to increase the open-circuit voltage of organic solar cells or achieve better energy alignment as electron transport layers in, for example, perovskite solar cells. However, bis-PCBM is usually synthesized as a mixture of structural isomers, which can lead to both energetic and morphological disorder, negatively affecting device performance. Here, we present a comprehensive study on the molecular properties of 19 pure bis-isomers of PCBM using a variety of characterization methods, including ultraviolet photoelectron spectroscopy, thermal gravimetric analysis, differential scanning calorimetry, single crystal structure, and (time-dependent) density functional theory calculation. We find that the lowest unoccupied molecular orbital of such bis-isomers can be tuned to be up to 170 meV shallower than PCBM and up to 100 meV shallower than the mixture of unseparated isomers. The isolated bis-isomers also show an electron mobility in organic field-effect transistors of up to 4.5 × 10-2 cm2/(V s), which is an order of magnitude higher than that of the mixture of bis-isomers. These properties enable the fabrication of the highest performing bis-PCBM organic solar cell to date, with the best device showing a power conversion efficiency of 7.2%. Interestingly, we find that the crystallinity of bis-isomers correlates negatively with electron mobility and organic solar cell device performance, which we relate to their molecular symmetry, with a lower symmetry leading to more amorphous bis-isomers, less energetic disorder, and higher dimensional electron transport. This work demonstrates the potential of side chain engineering for optimizing the performance of fullerene-based organic electronic devices.

2.
Proc Natl Acad Sci U S A ; 120(35): e2306272120, 2023 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-37603750

RESUMEN

Semiconducting conjugated polymers bearing glycol side chains can simultaneously transport both electronic and ionic charges with high charge mobilities, making them ideal electrode materials for a range of bioelectronic devices. However, heavily glycolated conjugated polymer films have been observed to swell irreversibly when subjected to an electrochemical bias in an aqueous electrolyte. The excessive swelling can lead to the degradation of their microstructure, and subsequently reduced device performance. An effective strategy to control polymer film swelling is to copolymerize glycolated repeat units with a fraction of monomers bearing alkyl side chains, although the microscopic mechanism that constrains swelling is unknown. Here we investigate, experimentally and computationally, a series of archetypal mixed transporting copolymers with varying ratios of glycolated and alkylated repeat units. Experimentally we observe that exchanging 10% of the glycol side chains for alkyl leads to significantly reduced film swelling and an increase in electrochemical stability. Through molecular dynamics simulation of the amorphous phase of the materials, we observe the formation of polymer networks mediated by alkyl side-chain interactions. When in the presence of water, the network becomes increasingly connected, counteracting the volumetric expansion of the polymer film.

3.
Adv Mater ; 34(39): e2204258, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35946142

RESUMEN

Exchanging hydrophobic alkyl-based side chains to hydrophilic glycol-based side chains is a widely adopted method for improving mixed-transport device performance, despite the impact on solid-state packing and polymer-electrolyte interactions being poorly understood. Presented here is a molecular dynamics (MD) force field for modeling alkoxylated and glycolated polythiophenes. The force field is validated against known packing motifs for their monomer crystals. MD simulations, coupled with X-ray diffraction (XRD), show that alkoxylated polythiophenes will pack with a "tilted stack" and straight interdigitating side chains, whilst their glycolated counterpart will pack with a "deflected stack" and an s-bend side-chain configuration. MD simulations reveal water penetration pathways into the alkoxylated and glycolated crystals-through the π-stack and through the lamellar stack respectively. Finally, the two distinct ways triethylene glycol polymers can bind to cations are revealed, showing the formation of a metastable single bound state, or an energetically deep double bound state, both with a strong side-chain length dependence. The minimum energy pathways for the formation of the chelates are identified, showing the physical process through which cations can bind to one or two side chains of a glycolated polythiophene, with consequences for ion transport in bithiophene semiconductors.

4.
ACS Appl Mater Interfaces ; 9(16): 14136-14144, 2017 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-28357861

RESUMEN

High power conversion efficiency (PCE) inverted organic photovoltaics (OPVs) usually use thermally evaporated MoO3 as a hole transporting layer (HTL). Despite the high PCE values reported, stability investigations are still limited and the exact degradation mechanisms of inverted OPVs using thermally evaporated MoO3 HTL remain unclear under different environmental stress factors. In this study, we monitor the accelerated lifetime performance under the ISOS-D-2 protocol (heat conditions 65 °C) of nonencapsulated inverted OPVs based on the thiophene-based active layer materials poly(3-hexylthiophene) (P3HT), poly[[4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b']dithiophene-2,6-diyl][3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl]] (PTB7), and thieno[3,2-b]thiophene-diketopyrrolopyrrole (DPPTTT) blended with [6,6]-phenyl C71-butyric acid methyl ester (PC[70]BM). The presented investigation of degradation mechanisms focus on optimized P3HT:PC[70]BM-based inverted OPVs. Specifically, we present a systematic study on the thermal stability of inverted P3HT:PC[70]BM OPVs using solution-processed poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) and evaporated MoO3 HTL. Using a series of measurements and reverse engineering methods, we report that the P3HT:PC[70]BM/MoO3 interface is the main origin of failure of the P3HT:PC[70]BM-based inverted OPVs under intense heat conditions, a trend that is also observed for the other two thiophene-based polymers used in this study.

5.
Nanoscale ; 9(8): 2723-2731, 2017 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-28078339

RESUMEN

Novel optoelectronic devices rely on complex nanomaterial systems where the nanoscale morphology and local chemical composition are critical to performance. However, the lack of analytical techniques that can directly probe these structure-property relationships at the nanoscale presents a major obstacle to device development. In this work, we present a novel method for non-destructive, simultaneous mapping of the morphology, chemical composition and photoelectrical properties with <20 nm spatial resolution by combining plasmonic optical signal enhancement with electrical-mode scanning probe microscopy. We demonstrate that this combined approach offers subsurface sensitivity that can be exploited to provide molecular information with a nanoscale resolution in all three spatial dimensions. By applying the technique to an organic solar cell device, we show that the inferred surface and subsurface composition distribution correlates strongly with the local photocurrent generation and explains macroscopic device performance. For instance, the direct measurement of fullerene phase purity can distinguish between high purity aggregates that lead to poor performance and lower purity aggregates (fullerene intercalated with polymer) that result in strong photocurrent generation and collection. We show that the reliable determination of the structure-property relationship at the nanoscale can remove ambiguity from macroscopic device data and support the identification of the best routes for device optimisation. The multi-parameter measurement approach demonstrated herein is expected to play a significant role in guiding the rational design of nanomaterial-based optoelectronic devices, by opening a new realm of possibilities for advanced investigation via the combination of nanoscale optical spectroscopy with a whole range of scanning probe microscopy modes.

6.
Sci Rep ; 6: 29437, 2016 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-27412119

RESUMEN

All-organic-based photovoltaic solar cells have attracted considerable attention because of their low-cost processing and short energy payback time. In such systems the primary dissociation of an optical excitation into a pair of photocarriers has been recently shown to be extremely rapid and efficient, but the physical reason for this remains unclear. Here, two-dimensional photocurrent excitation spectroscopy, a novel non-linear optical spectroscopy, is used to probe the ultrafast coherent decay of photoexcitations into charge-producing states in a polymer:fullerene based solar cell. The two-dimensional photocurrent spectra are interpreted by introducing a theoretical model for the description of the coupling of the electronic states of the system to an external environment and to the applied laser fields. The experimental data show no cross-peaks in the twodimensional photocurrent spectra, as predicted by the model for coherence times between the exciton and the photocurrent producing states of 20 fs or less.

7.
Nano Lett ; 6(8): 1674-81, 2006 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16895355

RESUMEN

Monte Carlo algorithms are used to simulate the morphologies adopted by polymer chains in a polymer-blend film in the limits where the chains are mutually attractive (homophilic regime) and mutually repulsive (heterophilic regime) and then to simulate the drift transport of charges through the polymer chains. In the homophilic regime, chains aggregate into tangled domains resulting in a relatively high percolation threshold, a high density of configurational trap states, and slow, dispersive charge transport. In the heterophilic regime at the same polymer volume fraction, chains self-organize into a lacework pattern resulting in a low percolation threshold and efficient, trap-free charge transport. For homophilic morphologies interchain hopping is rate-limiting and mobility is insensitive to chain length, whereas for heterophilic morphologies intrachain transport is important and mobility increases with increasing chain length. The morphologies are used in simulations of photocurrent quantum efficiency for donor-acceptor blend photodiodes, which show that the effects of morphology on charge pair generation and recombination compete with the effect on transport, such that the optimum blend composition is sensitive to both morphology and recombination rate. We conclude that it is essential to consider the connectivity of and morphology adopted by polymer chains in the optimization of materials for organic solar cells.


Asunto(s)
Electroquímica/métodos , Modelos Químicos , Modelos Moleculares , Nanoestructuras/química , Fotoquímica/métodos , Polímeros/química , Simulación por Computador , Conductividad Eléctrica , Transporte de Electrón/efectos de la radiación , Luz , Nanoestructuras/efectos de la radiación , Polímeros/efectos de la radiación , Semiconductores , Electricidad Estática
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA