Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Mil Med ; 2023 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-36794799

RESUMEN

INTRODUCTION: Recent military conflicts have resulted in a significant number of lower extremity injuries to U.S. service members that result in amputation or limb preservation (LP) procedures. Service members receiving these procedures report a high prevalence and deleterious consequences of falls. Very little research exists to improve balance and reduce falls, especially among young active populations such as service members with LP or limb loss. To address this research gap, we evaluated the success of a fall prevention training program for service members with lower extremity trauma by (1) measuring fall rates, (2) quantifying improvements in trunk control, and (3) determining skill retention at 3 and 6 months after training. MATERIALS AND METHODS: Forty-five participants (40 males, mean [±SD] age, 34 ± 8 years) with lower extremity trauma (20 with unilateral transtibial amputation, 6 with unilateral transfemoral amputation, 5 with bilateral transtibial amputation, and 14 with unilateral LP procedures) were enrolled. A microprocessor-controlled treadmill was used to produce task-specific postural perturbations which simulated a trip. The training was conducted over a 2-week period and consisted of six 30-minute sessions. The task difficulty was increased as the participant's ability progressed. The effectiveness of the training program was assessed by collecting data before training (baseline; repeated twice), immediately after training (0 month), and at 3 and 6 months post-training. Training effectiveness was quantified by participant-reported falls in the free-living environment before and after training. Perturbation-induced recovery step trunk flexion angle and velocity was also collected. RESULTS: Participants reported reduced falls and improved balance confidence in the free-living environment following the training. Repeated testing before training revealed that there were no pre-training differences in trunk control. The training program improved trunk control following training, and these skills were retained at 3 and 6 months after training. CONCLUSION: This study showed that task-specific fall prevention training reduced falls across a cohort of service members with diverse types of amputations and LP procedures following lower extremity trauma. Importantly, the clinical outcome of this effort (i.e., reduced falls and improved balance confidence) can lead to increased participation in occupational, recreational, and social activities and thus improved quality of life.

2.
Prosthet Orthot Int ; 46(6): 614-618, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36515906

RESUMEN

PURPOSE: Prior research has noted similar functional and subjective outcomes between individuals with delayed amputation vs. limb salvage; however, these reports are generally retrospective in nature. Here, we prospectively compare functional and subjective outcomes from an individual with limb salvage to a delayed transtibial amputation using a single-subject design with sequential participation in a fall-prevention program. MATERIALS AND METHODS: The subject participated in a fall-prevention rehabilitation training program, once before undergoing a delayed transtibial amputation and again after. As part of the fall-prevention program, the participant completed pretraining and post-training assessments which quantified trunk control by 1) trunk flexion and flexion velocity after trip-inducing perturbations on a treadmill and 2) trunk sway parameters during unstable sitting. In addition, the four square step test was administered, and patient-reported outcomes, including pain, prosthetic/orthotic comfort, and walking/running endurance, were collected. RESULTS: In general, the participant demonstrated improved trunk control after amputation, as evidenced by decreases in trunk flexion and flexion velocity after perturbation and sway parameters during unstable sitting. In addition, four square step test times were shorter with amputation vs. limb salvage; the participant also reported reduced pain and greater comfort with amputation (vs. limb salvage). CONCLUSIONS: Although just a single participant, within-subject comparisons provide quantitative evidence that, for some individuals, delayed/late (transtibial) amputation after prolonged limb salvage may be beneficial in reducing pain and restoring function.


Asunto(s)
Marcha , Recuperación del Miembro , Humanos , Estudios Retrospectivos , Amputación Quirúrgica , Dolor
3.
Clin Biomech (Bristol, Avon) ; 100: 105774, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36208575

RESUMEN

BACKGROUND: Persons with lower limb trauma are at high risk for falls. Although there is a wide range of measures used to assess stability and fall-risk that include performance measures, temporal-spatial gait parameters, and nonlinear dynamic stability calculations, these measures are typically derived from fall-prone populations, such as older adults. Thus, it is unclear if these commonly used fall-risk indicators are effective at evaluating fall-risk in a younger, higher-functioning population of Service members with lower limb trauma. METHODS: Twenty-one Service members with lower limb trauma completed a battery of fall-risk assessments that included performance measures (e.g., four-square-step-test), and gait parameters (e.g., step width, step length, step time) and dynamic stability measures (e.g., local divergence exponents) during 10 min of treadmill walking. Participants also reported the number of stumbles and falls over the previous 4 weeks. Negative Binomial and Quasibinomial Regressions were used to evaluate the strength of associations between fall-risk indicators and self-reported falls. FINDING: Participants reported on average stumbling 6(4) times and falling 2(3) times in the previous 4 weeks. At least one fall was reported by 62% of the participants. None of the fall-risk indicators were significantly associated with fall prevalence in this population of Service members with lower limb trauma (p > 0.1). INTERPRETATION: Despite the high number of reported falls in this young active population, none of the fall-risk indicators investigated effectively captured and quantified the fall-risk. Further research is needed to identify appropriate fall-risk assessments for young, high-functioning individuals with lower limb trauma.


Asunto(s)
Extremidad Inferior , Caminata , Humanos , Anciano
4.
Gait Posture ; 92: 493-497, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-33663914

RESUMEN

BACKGROUND: Trunk postural control (TPC) is critical in maintaining balance following perturbations (i.e., avoiding falls), and impaired among persons with lower extremity trauma, contributing to elevated fall risk. Previously, a fall-prevention program improved TPC in individuals with unilateral transtibial amputation following trip-inducing perturbations. However, it is presently unclear if these improvements are task specific. RESEARCH QUESTION: Do improvements to TPC gained from a fall-prevention program translate to another task which assesses TPC in isolation (i.e., unstable sitting)? Secondarily, can isolated TPC be used to identify who would benefit most from the fall-prevention program? METHODS: Twenty-five individuals (21 male/4 female) with lower extremity trauma, who participated in a larger fall-prevention program, were included in this analysis. Trunk flexion and flexion velocity quantified TPC following perturbation; accelerometer-based sway parameters quantified TPC during unstable sitting. A generalized linear mixed-effects model assessed training-induced differences in TPC after perturbation; a generalized linear model assessed differences in sway parameters following training. Spearman's rho related training-induced changes to TPC following perturbation (i.e., the difference in TPC measures at pre- and post-training assessments) with pre- vs. post-training changes to sway parameters during unstable sitting (i.e., the difference in sway parameters at pre- and post-training assessments) as well as pre-training sway parameters with the pre- vs. post-training differences in TPC following perturbation. RESULTS: Following training, trunk flexion angles decreased, indicating improved TPC; however, sway parameters did not differ pre- and post-training. In addition, pre- vs. post-training differences in TPC following perturbation were neither strongly nor significantly correlated with sway parameters. Moreover, pre-training sway parameters did not correlate with pre- vs. post-training differences in trunk flexion/flexion velocity. SIGNIFICANCE: Overall, these results indicate that improvements to TPC gained from fall-prevention training are task-specific and do not translate to other activities. Moreover, isolated TPC measures are not able to identify individuals that benefit most from the fall-prevention program.


Asunto(s)
Accidentes por Caídas , Equilibrio Postural , Accidentes por Caídas/prevención & control , Fenómenos Biomecánicos , Femenino , Humanos , Extremidad Inferior , Masculino , Torso
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...