Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Ther Drug Monit ; 45(4): 562-565, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-36728573

RESUMEN

PURPOSE: Increasing evidence supports daptomycin therapeutic drug monitoring. The author's reference center used to perform therapeutic drug monitoring in patients who receive high-dose daptomycin for bone and joint infections, with a three-sample strategy to estimate the daptomycin daily area under the concentration-time curve (AUC). The objective of this study was to evaluate simpler strategies based on only 2 or 1 sample(s). METHODS: The authors used the BestDose software to estimate the daptomycin AUC after Bayesian posterior estimation of individual pharmacokinetic (PK) parameters at steady state. The reference AUC (AUC full ) was based on 3 samples obtained predose (T0) and approximately 1 hour (T1) and 6 hours (T6) after the start of a 30-minute infusion of IV daptomycin. It was compared with the AUC based on all possible 2-sample and 1-sample strategies. Bias, imprecision, regression, and Bland-Altman plots were used to assess the performance of the alternative strategies. RESULTS: Data from 77 patients were analyzed. The mean AUC full value was 936 ± 373 mg·h/L. The best 2-sample strategy was T0 + T6, with a mean prediction bias of 0.13 mg·h/L and absolute imprecision of 3%. The T0 + T1 strategy also performed well with a mean bias of -10 mg·h/L and imprecision of 3%. The best 1-sample strategy was the T6 sample only with a bias of 2.19 mg·h/L and imprecision of 6%. CONCLUSIONS: Bayesian estimation of daptomycin AUC based on a two-sample strategy was associated with negligible bias and imprecision compared with the author's usual three-sample strategy. The trough and peak strategy may shorten and simplify patient visits and reduce assay labor and costs.


Asunto(s)
Daptomicina , Humanos , Teorema de Bayes , Área Bajo la Curva , Programas Informáticos , Manejo de Especímenes
2.
Clin Pharmacokinet ; 62(2): 307-319, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36631686

RESUMEN

BACKGROUND AND OBJECTIVE: Chronic kidney disease (CKD) may alter drug renal elimination but is also known for interacting with hepatic metabolism via multiple uremic components. However, few global models, considering the five major cytochromes, have been published, and none specifically address the decrease in cytochrome P450 (CYP450) activity. The aim of our study was to estimate the possibility of quantifying residual cytochrome activity as a function of filtration rate, according to the data available in the literature. METHODS: For each drug in the DDI-predictor database, we collected available pharmacokinetic data comparing drug exposition in the healthy patient and in various stages of CKD, before building a model capable of predicting the variation of exposure according to the degree of renal damage. We followed an In vivo Mechanistic Static Model (IMSM) approach, previously validated for predicting change in liver clearance. We estimated the remaining fraction parameters at glomerular filtration rate (GFR) = 0 and the alpha value of GFR to 50% impairment for the 5 major cytochromes using a non-linear constrained regression using Matlab software. RESULTS: Thirty-one compounds had usable pharmacokinetic data, with 51 AUC ratios between healthy and renal impaired patients. The remaining CYP3A4 activity was estimated to be 0.4 when CYP2D6, 2C9, 2C19 and 1A2 activity was estimated to be 0.43; 1; 0.73 and 0.7, respectively. The alpha value was estimated to be at 6.62; 25; 9.8; 1.38 and 11.04 for each cytochrome. In comparison with published data, all estimates but one were correctly predicted in the range of 0.5-2. CONCLUSION: Our approach was able to describe the impact of CKD on metabolic elimination. Modelling this process makes it possible to anticipate changes in clearance and drug exposure in CKD patients, with the advantage of greater simplicity than approaches based on physiologically-based pharmacokinetic modelling. However, a precise estimation of the impact of renal failure is not possible with an IMSM approach due to the large variability of the published data, and thus should rely on specific pharmacokinetic modelling for narrow therapeutic margin drugs.


Asunto(s)
Insuficiencia Renal Crónica , Insuficiencia Renal , Humanos , Riñón , Eliminación Renal , Citocromo P-450 CYP3A/metabolismo , Modelos Biológicos
3.
Pharmaceutics ; 14(8)2022 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-36015375

RESUMEN

Therapeutic drug monitoring (TDM) of tobramycin is widely performed in patients with cystic fibrosis (CF), but little is known about the value of model-informed precision dosing (MIPD) in this setting. We aim at reporting our experience with tobramycin MIPD in adult patients with CF. We analyzed data from adult patients with CF who received IV tobramycin and had model-guided TDM during the first year of implementation of MIPD. The predictive performance of a pharmacokinetic (PK) model was assessed. Observed maximal (Cmax) and minimal (Cmin) concentrations after initial dosing were compared with target values. We compared the initial doses and adjusted doses after model-based TDM, as well as renal function at the beginning and end of therapy. A total of 78 tobramycin courses were administered in 61 patients. After initial dosing set by physicians (mean, 9.2 ± 1.4 mg/kg), 68.8% of patients did not achieve the target Cmax ≥ 30 mg/L. The PK model fit the data very well, with a median absolute percentage error of 4.9%. MIPD was associated with a significant increase in tobramycin doses (p < 0.001) without significant change in renal function. Model-based dose suggestions were wellaccepted by the physicians and the expected target attainment for Cmax was 83%. To conclude, the implementation of MIPD was effective in changing prescribing practice and was not associated with nephrotoxic events in adult patients with CF.

4.
Antimicrob Agents Chemother ; 65(9): e0104321, 2021 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-34228545

RESUMEN

Rifamycins are widely used for treating mycobacterial and staphylococcal infections. Drug-drug interactions (DDI) caused by rifampicin (RIF) are a major issue. We used a model-based approach to predict the magnitude of DDI with RIF and rifabutin (RBT) for 217 cytochrome P450 (CYP) substrates. On average, DDI caused by low-dose RIF were twice as potent as those caused by RBT. Contrary to RIF, RBT appears unlikely to cause severe DDI, even with sensitive CYP substrates.


Asunto(s)
Preparaciones Farmacéuticas , Rifamicinas , Interacciones Farmacológicas , Rifabutina/farmacología , Rifampin/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...