Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38249519

RESUMEN

We apply spatial transcriptomics and proteomics to select pancreatic cancer surface receptor targets for molecular imaging and theranostics using an approach that can be applied to many cancers. Selected cancer surfaceome epithelial markers were spatially correlated and provided specific cancer localization, whereas the spatial correlation between cancer markers and immune- cell or fibroblast markers was low. While molecular imaging of cancer-associated fibroblasts and integrins has been proposed for pancreatic cancer, our data point to the tight junction protein claudin-4 as a theranostic target. Claudin-4 expression increased ∼16 fold in cancer as compared with normal pancreas, and the tight junction localization conferred low background for imaging in normal tissue. We developed a peptide-based molecular imaging agent targeted to claudin-4 with accumulation to ∼25% injected activity per cc (IA/cc) in metastases and ∼18% IA/cc in tumors. Our work motivates a new approach for data-driven selection of molecular targets.

2.
STAR Protoc ; 4(4): 102723, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37976155

RESUMEN

Microbubbles are currently approved for diagnostic ultrasound imaging and are under evaluation in therapeutic protocols. Here, we present a protocol for in vitro sonoporation validation using non-targeted microbubbles for gene delivery. We describe steps for computational simulation, experimental calibration, reagent preparation, ultrasound treatment, validation, and gene expression analysis. This protocol uses approved diagnostic microbubbles and parameters that are applicable for human use. For complete details on the use and execution of this protocol, please refer to Bez et al. (2017).1.


Asunto(s)
Sistemas de Liberación de Medicamentos , Microburbujas , Humanos , Sistemas de Liberación de Medicamentos/métodos , Ultrasonografía/métodos , Técnicas de Transferencia de Gen
3.
Cytometry A ; 103(11): 839-850, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37768325

RESUMEN

High-dimensional immunoprofiling is essential for studying host response to immunotherapy, infection, and disease in murine model systems. However, the difficulty of multiparameter panel design combined with a lack of existing murine tools has prevented the comprehensive study of all major leukocyte phenotypes in a single assay. Herein, we present a 40-color flow cytometry panel for deep immunophenotyping of murine lymphoid tissues, including the spleen, blood, Peyer's patches, inguinal lymph nodes, bone marrow, and thymus. This panel uses a robust set of surface markers capable of differentiating leukocyte subsets without the use of intracellular staining, thus allowing for the use of cells in downstream functional experiments or multiomic analyses. Our panel classifies T cells, B cells, natural killer cells, innate lymphoid cells, monocytes, macrophages, dendritic cells, basophils, neutrophils, eosinophils, progenitors, and their functional subsets by using a series of co-stimulatory, checkpoint, activation, migration, and maturation markers. This tool has a multitude of systems immunology applications ranging from serial monitoring of circulating blood signatures to complex endpoint analysis, especially in pre-clinical settings where treatments can modulate leukocyte abundance and/or function. Ultimately, this 40-color panel resolves a diverse array of immune cells on the axes of time, tissue, and treatment, filling the niche for a modern tool dedicated to murine immunophenotyping.


Asunto(s)
Inmunidad Innata , Tejido Linfoide , Ratones , Animales , Citometría de Flujo/métodos , Linfocitos T , Células Asesinas Naturales , Inmunofenotipificación
4.
ACS Nano ; 17(3): 2554-2567, 2023 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-36688431

RESUMEN

Raman spectroscopy provides excellent specificity for in vivo preclinical imaging through a readout of fingerprint-like spectra. To achieve sufficient sensitivity for in vivo Raman imaging, metallic gold nanoparticles larger than 10 nm were employed to amplify Raman signals via surface-enhanced Raman scattering (SERS). However, the inability to excrete such large gold nanoparticles has restricted the translation of Raman imaging. Here we present Raman-active metallic gold supraclusters that are biodegradable and excretable as nanoclusters. Although the small size of the gold nanocluster building blocks compromises the electromagnetic field enhancement effect, the supraclusters exhibit bright and prominent Raman scattering comparable to that of large gold nanoparticle-based SERS nanotags due to high loading of NIR-resonant Raman dyes and much suppressed fluorescence background by metallic supraclusters. The bright Raman scattering of the supraclusters was pH-responsive, and we successfully performed in vivo Raman imaging of acidic tumors in mice. Furthermore, in contrast to large gold nanoparticles that remain in the liver and spleen over 4 months, the supraclusters dissociated into small nanoclusters, and 73% of the administered dose to mice was excreted during the same period. The highly excretable Raman supraclusters demonstrated here offer great potential for clinical applications of in vivo Raman imaging.


Asunto(s)
Nanopartículas del Metal , Neoplasias , Animales , Ratones , Oro/química , Nanopartículas del Metal/química , Neoplasias/diagnóstico por imagen , Espectrometría Raman/métodos , Diagnóstico por Imagen
5.
Theranostics ; 12(18): 7884-7902, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36451859

RESUMEN

Background: Although combination immunotherapies incorporating local and systemic components have shown promising results in treating solid tumors, varied tumor microenvironments (TMEs) can impact immunotherapeutic efficacy. Method: We designed and evaluated treatment strategies for breast and pancreatic cancer combining magnetic resonance-guided focused ultrasound (MRgFUS) ablation and antibody therapies. With a combination of single-cell sequencing, spectral flow cytometry, and histological analyses, we profiled an immune-suppressed KPC (Kras+/LSL-G12D; Trp53+/LSL-R172H; Pdx1-Cre) pancreatic adenocarcinoma (MT4) model and a dense epithelial neu deletion (NDL) HER2+ mammary adenocarcinoma model with a greater fraction of lymphocytes, natural killer cells and activated dendritic cells. We then performed gene ontology analysis, spectral and digital cytometry to assess the immune response to combination immunotherapies and correlation with survival studies. Result: Based on gene ontology analysis, adding ablation to immunotherapy enriched immune cell migration pathways in the pancreatic cancer model and extensively enriched wound healing pathways in the breast cancer model. With CIBERSORTx digital cytometry, aCD40 + aPD-1 immunotherapy combinations enhanced dendritic cell activation in both models. In the MT4 TME, adding the combination of aCD40 antibody and checkpoint inhibitors (aPD-1 and aCTLA-4) with ablation was synergistic, increasing activated natural killer cells and T cells in distant tumors. Furthermore, ablation with immunotherapy upregulated critical Ly6c myeloid remodeling phenotypes that enhance T-cell effector function and increased granzyme and protease encoding genes by as much as 100-fold. Ablation combined with immunotherapy then extended survival in the MT4 model to a greater extent than immunotherapy alone. Conclusion: In summary, TME profiling informed a successful multicomponent treatment protocol incorporating ablation and facilitated differentiation of TMEs in which ablation is most effective.


Asunto(s)
Adenocarcinoma , Neoplasias Pancreáticas , Ratones , Animales , Neoplasias Pancreáticas/terapia , Inmunoterapia , Factores Inmunológicos , Microambiente Tumoral , Neoplasias Pancreáticas
6.
Biomaterials ; 288: 121701, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35985893

RESUMEN

The development of gene delivery vehicles with high organ specificity when administered systemically is a critical goal for gene therapy. We combine optical and positron emission tomography (PET) imaging of 1) reporter genes and 2) capsid tags to assess the temporal and spatial distribution and transduction of adeno-associated viruses (AAVs). AAV9 and two engineered AAV vectors (PHP.eB and CAP-B10) that are noteworthy for maximizing blood-brain barrier transport were compared. CAP-B10 shares a modification in the 588 loop with PHP.eB, but also has a modification in the 455 loop, added with the goal of reducing off-target transduction. PET and optical imaging revealed that the additional modifications retained brain receptor affinity. In the liver, the accumulation of AAV9 and the engineered AAV capsids was similar (∼15% of the injected dose per cc and not significantly different between capsids at 21 h). However, the engineered capsids were primarily internalized by Kupffer cells rather than hepatocytes, and liver transduction was greatly reduced. PET reporter gene imaging after engineered AAV systemic injection provided a non-invasive method to monitor AAV-mediated protein expression over time. Through comparison with capsid tagging, differences between brain localization and transduction were revealed. In summary, AAV capsids bearing imaging tags and reporter gene payloads create a unique and powerful platform to assay the pharmacokinetics, cellular specificity and protein expression kinetics of AAV vectors in vivo, a key enabler for the field of gene therapy.


Asunto(s)
Cápside , Dependovirus , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Cápside/metabolismo , Dependovirus/genética , Vectores Genéticos , Hígado/diagnóstico por imagen , Imagen Multimodal , Transducción Genética
7.
Biomaterials ; 281: 121339, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35078042

RESUMEN

Ex vivo programming of T cells can be efficacious but is complex and expensive; therefore, the development of methods to transfect T cells in situ is important. We developed and optimized anti-CD3-targeted lipid nanoparticles (aCD3-LNPs) to deliver tightly packed, reporter gene mRNA specifically to T cells. In vitro, targeted LNPs efficiently delivered mCherry mRNA to Jurkat T cells, and T-cell activation and depletion were associated with aCD3 antibody coating on the surface of LNPs. aCD3-LNPs, but not non-targeted LNPs, accumulated within the spleen following systemic injection, with mCherry and Fluc signals visible within 30 min after injection. At 24 h after aCD3-LNP injection, 2-4% of all splenic T cells and 2-7% of all circulating T cells expressed mCherry, and this was dependent on aCD3 coating density. Targeting and transfection were accompanied by systemic CD25+, OX40+, and CD69+ T-cell activation with temporary CD3e ligand loss and depletion of splenic and circulating subsets. Migration of splenic CD8a+ T cells from the white-pulp to red-pulp, and differentiation from naïve to memory and effector phenotypes, followed upon aCD3-LNP delivery. Additionally, aCD3-LNP injection stimulated the secretion of myeloid-derived chemokines and T-helper cytokines into plasma. Lastly, we administered aCD3-LNPs to tumor bearing mice and found that transfected T cells localized within tumors and tumor-draining lymph nodes following immunotherapy treatment. In summary, we show that CD3-targeted transfection is feasible, yet associated with complex immunological consequences that must be further studied for potential therapeutic applications.


Asunto(s)
Lípidos , Nanopartículas , Animales , Liposomas , Ratones , Fenotipo , ARN Mensajero/genética , Transfección
8.
J Control Release ; 335: 281-289, 2021 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-34029631

RESUMEN

Early cancer detection can dramatically increase treatment options and survival rates for patients, yet detection of early-stage tumors remains difficult. Here, we demonstrate a two-step strategy to detect and locate cancerous lesions by delivering tumor-activatable minicircle (MC) plasmids encoding a combination of blood-based and imaging reporter genes to tumor cells. We genetically engineered the MCs, under the control of the pan-tumor-specific Survivin promoter, to encode: 1) Gaussia Luciferase (GLuc), a secreted biomarker that can be easily assayed in blood samples; and 2) Herpes Simplex Virus Type 1 Thymidine Kinase mutant (HSV-1 sr39TK), a PET reporter gene that can be used for highly sensitive and quantitative imaging of the tumor location. We evaluated two methods of MC delivery, complexing the MCs with the chemical transfection reagent jetPEI or encapsulating the MCs in extracellular vesicles (EVs) derived from a human cervical cancer HeLa cell line. MCs delivered by EVs or jetPEI yielded significant expression of the reporter genes in cell culture versus MCs delivered without a transfection reagent. Secreted GLuc correlated with HSV-1 sr39TK expression with R2 = 0.9676. MC complexation with jetPEI delivered a larger mass of MC for enhanced transfection, which was crucial for in vivo animal studies, where delivery of MCs via jetPEI resulted in GLuc and HSV-1 sr39TK expression at significantly higher levels than controls. To the best of our knowledge, this is the first report of the PET reporter gene HSV-1 sr39TK delivered via a tumor-activatable MC to tumor cells for an early cancer detection strategy. This work explores solutions to endogenous blood-based biomarker and molecular imaging limitations of early cancer detection strategies and elucidates the delivery capabilities and limitations of EVs.


Asunto(s)
Neoplasias , Timidina Quinasa , Animales , Biomarcadores , Genes Reporteros , Células HeLa , Humanos , Neoplasias/diagnóstico por imagen , Tomografía de Emisión de Positrones , Timidina Quinasa/genética , Transfección
9.
Nucl Med Biol ; 98-99: 8-17, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33962357

RESUMEN

BACKGROUND: A novel [64Cu]Cu-NOTA-aCD40 immunoPET tracer was developed to image a CD40+ pancreatic tumor model in C57BL/6 mice and to study the biodistribution profile of the agonist CD40 (aCD40) monoclonal antibody (mAb) alone or combined with other mAbs. PROCEDURES: Copper-64 ([64Cu]Cu) labeled NOTA-aCD40 and NOTA-IgG (10 µg; 7 MBq) were injected intravenously into C57BL/6 mice with subcutaneous mT4 tumors to assess specificity 48 h post injection (p.i.) through positron emission tomography/computed tomography (PET/CT) imaging and biodistribution studies (n = 5). [64Cu]Cu-NOTA-aCD40 was injected alone or simultaneously in combination with a therapeutic mass of cold aCD40 (100 µg), aPD-1 (200 µg) and aCTLA-4 (200 µg) mAbs. A group of mice with or without tumor received the second round of injections 1 or 3 weeks apart, respectively. PET/CT imaging and biodistribution studies were performed at 48 h p.i. The organ dose for [64Cu]Cu was estimated based on biodistribution studies with 2 µg [64Cu]Cu-NOTA-aCD40 (corresponds to 5 mg patient dose) in non-tumor bearing mice. RESULTS: [64Cu]Cu-NOTA-aCD40 accumulation was 2.3- and 7.8-fold higher than [64Cu]Cu-NOTA-IgG in tumors and spleen, respectively, indicating the specificity of aCD40 mAb in a mouse pancreatic tumor model. Tumor accumulation of [64Cu]Cu-NOTA-aCD40 was 21.2 ± 7.3%ID/g at 48 h after injection. Co-injection of [64Cu]Cu-NOTA-aCD40 with cold aCD40 mAb alone or with PD-1 and CTLA-4 mAbs reduced both spleen and tumor uptake, whereas liver uptake was increased. With the second round of injections, the liver was the only organ with substantial uptake. With a 2 µg administered dose of [64Cu]Cu-NOTA-aCD40 in a dosimetry study, the liver to spleen ratio was greater compared to the 10 µg dose (2.8 vs 0.37; respectively). The human equivalent for the highest dose organ (liver) was 198 ± 28.7 µSv/MBq. CONCLUSIONS: A CD40-immunoreactive [64Cu]Cu-NOTA-aCD40 probe was developed. The ratio of spleen to liver accumulation exceeded that of the IgG isotype and was greatest with a single small, injected mass. The safety of human patient imaging with [64Cu]Cu was established based on extrapolation of the organ specificity to human imaging.


Asunto(s)
Anticuerpos Monoclonales , Animales , Humanos , Ratones , Tomografía Computarizada por Tomografía de Emisión de Positrones , Distribución Tisular
10.
Adv Healthc Mater ; 10(10): e2100008, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33646600

RESUMEN

Resiquimod is an immunopotent toll-like receptor 7/8 agonist with antitumor activity. Despite being potent against skin cancers, it is poorly tolerated systemically due to toxicity. Integrating resiquimod into nanoparticles presents an avenue to circumvent the toxicity problem. Herein, the preparation of degradable nanoparticles with covalently bound resiquimod and their systemic application in cancer immunotherapy is reported. Dispersion in water of amphiphilic constructs integrating resiquimod covalently bound via degradable amide or ester linkages yields immune-activating nanoparticles. The degradable agonist-nanoparticle bonds allow the release of resiquimod from the carrier nanoparticles. In vitro assays with antigen presenting cells demonstrate that the nanoparticles retain the immunostimulatory activity of resiquimod. Systemic administration of the nanoparticles and checkpoint blockade (aPD-1) to a breast cancer mouse model with multiple established tumors triggers antitumor activity evidenced by suppressed tumor growth and enhanced CD8+ T-cell infiltration. Nanoparticles with ester links, which hydrolyze more readily, yield a stronger immune response with 75% of tumors eliminated when combined with aPD-1. The reduced tumor growth and the presence of activated CD8+ T-cells across multiple tumors suggest the potential for treating metastatic cancer.


Asunto(s)
Neoplasias de la Mama , Nanopartículas , Animales , Neoplasias de la Mama/tratamiento farmacológico , Linfocitos T CD8-positivos , Humanos , Imidazoles , Inmunidad , Inmunoterapia , Ratones , Micelas , Polímeros
11.
J Control Release ; 330: 1080-1094, 2021 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-33189786

RESUMEN

Resiquimod (R848) is a toll-like receptor 7 and 8 (TLR7/8) agonist with potent antitumor and immunostimulatory activity. However, systemic delivery of R848 is poorly tolerated because of its poor solubility in water and systemic immune activation. In order to address these limitations, we developed an intravenously-injectable formulation with R848 using thermosensitive liposomes (TSLs) as a delivery vehicle. R848 was remotely loaded into TSLs composed of DPPC: DSPC: DSPE-PEG2K (85:10:5, mol%) with 100 mM FeSO4 as the trapping agent inside. The final R848 to lipid ratio of the optimized R848-loaded TSLs (R848-TSLs) was 0.09 (w/w), 10-fold higher than the previously-reported values. R848-TSLs released 80% of R848 within 5 min at 42 °C. These TSLs were then combined with αPD-1, an immune checkpoint inhibitor, and ultrasound-mediated hyperthermia in a neu deletion (NDL) mouse mammary carcinoma model (Her2+, ER/PR negative). Combined with αPD-1, local injection of R848-TSLs showed superior efficacy with complete NDL tumor regression in both treated and abscopal sites achieved in 8 of 11 tumor bearing mice over 100 days. Immunohistochemistry confirmed enhanced CD8+ T cell infiltration and accumulation by R848-TSLs. Systemic delivery of R848-TSLs, combined with local hyperthermia and αPD-1, inhibited tumor growth and extended median survival from 28 days (non-treatment control) to 94 days. Upon re-challenge with reinjection of tumor cells, none of the previously cured mice developed tumors, as compared with 100% of age-matched control mice. The dose of R848 (10 µg for intra-tumoral injection or 6 mg/kg for intravenous injection delivered up to 4 times) was well-tolerated without weight loss or organ hypertrophy. In summary, we developed R848-TSLs that can be administered locally or systematically, resulting in tumor regression and enhanced survival when combined with αPD-1 in mouse models of breast cancer.


Asunto(s)
Hipertermia Inducida , Neoplasias , Animales , Imidazoles , Inmunoterapia , Liposomas , Ratones , Neoplasias/tratamiento farmacológico
12.
Mater Sci Eng C Mater Biol Appl ; 117: 111251, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32919625

RESUMEN

The treatment of pancreatic cancer with gemcitabine is hampered by its rapid metabolism in vivo, the dense stroma around the tumor site which prevents the drug from reaching the cancerous cells and drug resistance. To address these challenges, this study describes the preparation of a retinoid prodrug of gemcitabine, GemRA (gemcitabine conjugated to retinoic acid), and its formulation into a nanoparticulate system applicable for pancreatic cancer treatment. Retinoic acid targets stellate cells which are part of the stroma and can thus augment the delivery of gemcitabine. GemRA dissolved in dimethylsulfoxide presented efficacy towards PANC-1 (human) and mT4 (mouse) pancreatic cancer cell lines but its poor solubility in aqueous solution affects its applicability. Thus, the preparation of the nanoparticles was initially attempted through self-assembly of GemRA, which resulted in the formation of unstable aggregates that precipitated during preparation. As a result, encapsulation of the drug into micelles of polyethylene glycol-retinoic acid (PGRA) amphiphilic conjugates was accomplished and resulted in successful incorporation of GemRA into nanoparticles of ca. 33 nm by dynamic light scattering and 25 nm by transmission electron microscopy. The nanoparticles had good stability in aqueous media and protected gemcitabine from the enzymatic action of cytidine deaminase, which converts gemcitabine to its inactive metabolite upon circulation. Cellular uptake of the nanoparticles by PANC-1 cells was confirmed by fluorescence spectroscopy and flow cytometry. Treatment of PANC-1 cells in vitro with the prodrug-loaded nanoparticles resulted in a significant reduction in cell viability (IC50 ca. 5 µM) compared to treatment with gemcitabine (IC50 > 1000 µM). The ability of the GemRA-loaded nanoparticles to induce cellular apoptosis of treated PANC-1 cells was ascertained via a TUNEL assay suggesting these nanoparticles are effective in pancreatic cancer treatment.


Asunto(s)
Antineoplásicos , Nanopartículas , Neoplasias Pancreáticas , Profármacos , Animales , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Desoxicitidina/análogos & derivados , Humanos , Ratones , Neoplasias Pancreáticas/tratamiento farmacológico , Profármacos/farmacología , Retinoides/uso terapéutico , Gemcitabina
13.
Proc Natl Acad Sci U S A ; 117(23): 12674-12685, 2020 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-32430322

RESUMEN

Robust cytotoxic T cell infiltration has proven to be difficult to achieve in solid tumors. We set out to develop a flexible protocol to efficiently transfect tumor and stromal cells to produce immune-activating cytokines, and thus enhance T cell infiltration while debulking tumor mass. By combining ultrasound with tumor-targeted microbubbles, membrane pores are created and facilitate a controllable and local transfection. Here, we applied a substantially lower transmission frequency (250 kHz) than applied previously. The resulting microbubble oscillation was significantly enhanced, reaching an effective expansion ratio of 35 for a peak negative pressure of 500 kPa in vitro. Combining low-frequency ultrasound with tumor-targeted microbubbles and a DNA plasmid construct, 20% of tumor cells remained viable, and ∼20% of these remaining cells were transfected with a reporter gene both in vitro and in vivo. The majority of cells transfected in vivo were mucin 1+/CD45- tumor cells. Tumor and stromal cells were then transfected with plasmid DNA encoding IFN-ß, producing 150 pg/106 cells in vitro, a 150-fold increase compared to no-ultrasound or no-plasmid controls and a 50-fold increase compared to treatment with targeted microbubbles and ultrasound (without IFN-ß). This enhancement in secretion exceeds previously reported fourfold to fivefold increases with other in vitro treatments. Combined with intraperitoneal administration of checkpoint inhibition, a single application of IFN-ß plasmid transfection reduced tumor growth in vivo and recruited efficacious immune cells at both the local and distant tumor sites.


Asunto(s)
Inmunoterapia/métodos , Interferón beta/genética , Neoplasias Experimentales/terapia , Linfocitos T/inmunología , Transfección/métodos , Ondas Ultrasónicas , Animales , Línea Celular Tumoral , Membrana Celular/efectos de la radiación , Movimiento Celular , Humanos , Interferón beta/metabolismo , Ratones , Microburbujas/uso terapéutico , Linfocitos T/fisiología
14.
J Control Release ; 303: 42-54, 2019 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-30978432

RESUMEN

A successful chemotherapy-immunotherapy solid-tumor protocol should accomplish the following goals: debulk large tumors, release tumor antigen for cross-presentation and cross-priming, release cancer-suppressive cytokines and enhance anti-tumor immune cell populations. Thermally-activated drug delivery particles have the potential to synergize with immunotherapeutics to accomplish these goals; activation can release chemotherapy within bulky solid tumors and can enhance response when combined with immunotherapy. We set out to determine whether a single protocol, combining locally-activated chemotherapy and agonist immunotherapy, could accomplish these goals and yield a potentially translational therapy. For effective delivery of free doxorubicin to tumors with minimal toxicity, we stabilized doxorubicin with copper in temperature-sensitive liposomes that rapidly release free drug in the vasculature of cancer lesions upon exposure to ultrasound-mediated hyperthermia. We found that in vitro exposure of tumor cells to hyperthermia and doxorubicin resulted in immunogenic cell death and the local release of type I interferons across murine cancer cell lines. Following intravenous injection, local activation of the liposomes within a single tumor released doxorubicin and enhanced cross-presentation of a model antigen at distant tumor sites. While a variety of protocols achieved a complete response in >50% of treated mice, the complete response rate was greatest (90%) when 1 week of immunotherapy priming preceded a single activatable chemotherapeutic administration. While repeated chemotherapeutic delivery reduced local viable tumor, the complete response rate and a subset of tumor immune cells were also reduced. Taken together, the results suggest that activatable chemotherapy can enhance adjuvant immunotherapy; however, in a murine model the systemic adaptive immune response was greatest with a single administration of chemotherapy.


Asunto(s)
Antibióticos Antineoplásicos/administración & dosificación , Doxorrubicina/administración & dosificación , Hipertermia Inducida , Inmunoterapia , Neoplasias Mamarias Experimentales/terapia , Animales , Línea Celular Tumoral , Terapia Combinada , Femenino , Liposomas , Ratones Endogámicos C57BL , Ratones Transgénicos , Nanopartículas/administración & dosificación
15.
J Control Release ; 220(Pt A): 253-264, 2015 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-26471394

RESUMEN

Ultrasonic activation of nanoparticles provides the opportunity to deliver a large fraction of the injected dose to insonified tumors and produce a complete local response. Here, we evaluate whether the local and systemic response to chemotherapy can be enhanced by combining such a therapy with locally-administered CpG as an immune adjuvant. In order to create stable, activatable particles, a complex between copper and doxorubicin (CuDox) was created within temperature-sensitive liposomes. Whereas insonation of the CuDox liposomes alone has been shown to produce a complete response in murine breast cancer after 8 treatments of 6 mg/kg delivered over 4 weeks, combining this treatment with CpG resolved local cancers within 3 treatments delivered over 7 days. Further, contralateral tumors regressed as a result of the combined treatment, and survival was extended in systemic disease. In both the treated and contralateral tumor site, the combined treatment increased leukocytes and CD4+ and CD8+ T-effector cells and reduced myeloid-derived suppressor cells (MDSCs). Taken together, the results suggest that this combinatorial treatment significantly enhances the systemic efficacy of locally-activated nanotherapy.


Asunto(s)
Adyuvantes Inmunológicos/administración & dosificación , Antibióticos Antineoplásicos/administración & dosificación , Neoplasias de la Mama/tratamiento farmacológico , ADN/administración & dosificación , Doxorrubicina/administración & dosificación , Inmunoterapia/métodos , Nanopartículas , Compuestos Organometálicos/administración & dosificación , Terapia por Ultrasonido/métodos , Adyuvantes Inmunológicos/química , Animales , Antibióticos Antineoplásicos/química , Neoplasias de la Mama/inmunología , Neoplasias de la Mama/patología , Linfocitos T CD4-Positivos/efectos de los fármacos , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/efectos de los fármacos , Linfocitos T CD8-positivos/inmunología , Terapia Combinada , ADN/química , Doxorrubicina/química , Composición de Medicamentos , Femenino , Liposomas , Linfocitos Infiltrantes de Tumor/efectos de los fármacos , Linfocitos Infiltrantes de Tumor/inmunología , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Ratones , Nanotecnología , Compuestos Organometálicos/química , Tecnología Farmacéutica/métodos , Temperatura , Factores de Tiempo , Carga Tumoral/efectos de los fármacos , Microambiente Tumoral
16.
Biomaterials ; 56: 104-13, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25934284

RESUMEN

Ultrasound molecular imaging has great potential to impact early disease diagnosis, evaluation of disease progression and the development of target-specific therapy. In this paper, two neuropilin-1 (NRP) targeted peptides, CRPPR and ATWLPPR, were conjugated onto the surface of lipid microbubbles (MBs) to evaluate molecular imaging of tumor angiogenesis in a breast cancer model. Development of a molecular imaging agent using CRPPR has particular importance due to the previously demonstrated internalizing capability of this and similar ligands. In vitro, CRPPR MBs bound to an NRP-expressing cell line 2.6 and 15.6 times more than ATWLPPR MBs and non-targeted (NT) MBs, respectively, and the binding was inhibited by pretreating the cells with an NRP antibody. In vivo, the backscattered intensity within the tumor, relative to nearby vasculature, increased over time during the ∼6 min circulation of the CRPPR-targeted contrast agents providing high contrast images of angiogenic tumors. Approximately 67% of the initial signal from CRPPR MBs remained bound after the majority of circulating MBs had cleared (8 min), 8 and 4.5 times greater than ATWLPPR and NT MBs, respectively. Finally, at 7-21 days after the first injection, we found that CRPPR MBs cleared faster from circulation and tumor accumulation was reduced likely due to a complement-mediated recognition of the targeted microbubble and a decrease in angiogenic vasculature, respectively. In summary, we find that CRPPR MBs specifically bind to NRP-expressing cells and provide an effective new agent for molecular imaging of angiogenesis.


Asunto(s)
Neoplasias Mamarias Experimentales/diagnóstico por imagen , Microburbujas , Imagen Molecular/métodos , Neovascularización Patológica , Neuropilina-1/química , Animales , Línea Celular Tumoral , Complemento C3/química , Femenino , Humanos , Ligandos , Lípidos/química , Masculino , Neoplasias Mamarias Experimentales/patología , Ratones , Trasplante de Neoplasias , Péptidos/química , Neoplasias de la Próstata/patología , Unión Proteica , Dispersión de Radiación , Ultrasonografía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...