Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 936: 173505, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38797408

RESUMEN

Microplastic (MP) pollution is a pressing issue for both environmental health and the safety of human food sources. This study provides a comprehensive analysis of the effects of MPs on Mediterranean mussels (Mytilus galloprovincialis, Lamarck 1819), focusing on the food safety risks associated with MP and cadmium (Cd) exposure in these organisms intended for consumption. The retention of different polymer types of MPs in mussels was specifically evaluated, and the influence of Cd on MP retention across these polymers was investigated. Mussels were exposed to polystyrene (PS), polypropylene (PP), and polyethylene terephthalate (PET) MPs individually and in combination with the toxic metal Cd for a duration of 7 days. Antioxidant enzymes, oxidative stress parameters, and digestive system enzyme activities, selected as biomarkers for Cd and MPs pollution, were assessed. Furthermore, human consumption risk evaluations and limits regarding mussel intake were analysed in terms of food safety. The results suggest that exposure to Cd, MPs, or their combination induces oxidative stress, tissue damage, and neurotoxicity. Alterations in digestive enzyme activities could impact the mussels' energy acquisition from food and their capacity to conserve energy reserves. The estimated daily intake (EDI), provisional tolerable weekly intake (PTWI), target hazard quotient (THQ), and target cancer risk (TCR) levels for all groups surpassed established limits, implying a significant health risk for humans consuming these products. These results underscore the potential health risks for humans associated with consuming mussels exposed to Cd and/or MPs and provide valuable data for monitoring pollution levels and ecological risks in aquatic organisms. Additionally, our findings reveal that the retention of Cd in mussel tissues varies significantly after exposure, with combinations of PET and Cd showing lower levels of Cd accumulation compared to other groups, suggesting a differential interaction that influences Cd retention.


Asunto(s)
Cadmio , Microplásticos , Mytilus , Contaminantes Químicos del Agua , Animales , Mytilus/efectos de los fármacos , Cadmio/toxicidad , Contaminantes Químicos del Agua/toxicidad , Microplásticos/toxicidad , Estrés Oxidativo/efectos de los fármacos
2.
Vet Med Sci ; 10(3): e1466, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38695249

RESUMEN

BACKGROUND: In this study, we investigated the effects of swimming activity and feed restriction on digestion and antioxidant enzyme activities in juvenile rainbow trout (average body weight of 26.54 ± 0.36 g). METHODS: The stomach, liver and kidney tissues were obtained from four distinct groups: the static water group (fish were kept in static water and fed to satiation), the feeding restricted group (fish were kept in static water with a 25% feed restriction), the swimming exercised group (fish were forced to swimming at a flow rate of 1 Body Length per second (BL/s)) and the swimming exercised-feed restricted group (subjected to swimming exercise at a 1 BL/s flow rate along with a 25% feed restriction). We determined the levels of glutathione, lipid peroxidation and the activities of catalase, superoxide dismutase, glutathione peroxidase, glutathione reductase, glucose-6-phosphate dehydrogenase and lactate dehydrogenase, as well as the presence of reactive oxygen species in the tissues obtained from the fish. Additionally, the activities of pepsin, protease, lipase and arginase in these tissues were measured. RESULTS: Swimming activity and feed restriction showed different effects on the enzyme activities of the fish in the experimental groups. CONCLUSION: It can be concluded that proper nutrition and exercise positively influence the antioxidant system and enzyme activities in fish, reducing the formation of free radicals. This situation is likely to contribute to the fish's development.


Asunto(s)
Antioxidantes , Oncorhynchus mykiss , Natación , Animales , Oncorhynchus mykiss/fisiología , Oncorhynchus mykiss/metabolismo , Natación/fisiología , Antioxidantes/metabolismo , Acuicultura , Condicionamiento Físico Animal/fisiología , Privación de Alimentos/fisiología , Fenómenos Fisiológicos Nutricionales de los Animales , Digestión/fisiología , Alimentación Animal/análisis , Hígado/enzimología , Hígado/metabolismo
3.
J Fish Biol ; 104(5): 1493-1502, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38374523

RESUMEN

In this study, we investigated the effects of swimming activity and feed restriction on juvenile rainbow trout (Oncorhynchus mykiss) in decoupled aquaponic systems. Our focus was on assessing their impact on water quality parameters within the aquaponic setup and evaluating the growth performance of the fish, including final weight (FW), condition factor (K), coefficient of variation (c.v.) in weight, specific growth rate (SGR), total feed intake (g/fish), feed conversion rate (FCR), hepatosomatic index (HSI), and viscerosomatic index (VSI), as well as the growth of lettuce (Lactuca sativa L. var. elmaria). The study involved 108 juvenile rainbow trout with an average initial weight of 26.54 ± 0.36 g and 60 ten-day-old lettuce seedlings, over a period of 42 days. We designed four treatment groups, each with three fish tanks: static ad libitum (SA), where fish were in static water conditions and fed to satiation; static restriction (SR), with fish in static water and a 25% feed restriction; current ad libitum (CA), where fish experienced forced swimming at 1 BL s-1; and current restriction (CR), with swimming exercise at 1 BL s-1 and a 25% feed restriction. Using a flow rate of 1 BL s-1 in the tanks for rainbow trout yielded several benefits. Notably, the fish in the CA group exhibited increased feed intake (60 ± 1.78 g fish-1) and enhanced fish growth with an FW of 91.72 ± 0.91 g, compared to the SA group (55.88 ± 0.88 g fish-1 for feed intake and 89.26 ± 0.81 g for FW). In contrast, the CR group showed a reduced feed intake (39.02 ± 2.78 g fish-1) and a lower FW (67.85 ± 1.49 g) compared to the CA group. In addition, the CA group demonstrated positive contributions to fish development with a reduced HSI (1.26 ± 0.02) in comparison to the SA group (1.56 ± 0.14). Inadequate nutrient provisioning in the SR and CR groups negatively impacted fish growth and system efficiency. Our findings suggest that optimizing water flow and feed benefits fish and plants and enhances system sustainability.


Asunto(s)
Restricción Calórica , Hidroponía , Lactuca , Oncorhynchus mykiss , Natación , Calidad del Agua , Ingestión de Alimentos , Hidroponía/métodos , Hidroponía/normas , Lactuca/crecimiento & desarrollo , Oncorhynchus mykiss/crecimiento & desarrollo , Oncorhynchus mykiss/metabolismo , Natación/fisiología , Animales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...