Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-39216992

RESUMEN

Fluoroscopic examinations like Endoscopic Retrograde Cholangiopancreatography (ERCP) and Percutaneous Transhepatic Cholangiography (PTC) are fundamental in diagnosing and treating hepatobiliary diseases. However, these procedures expose patients to significant radiation, highlighting the need for a detailed assessment of the radiation doses received by critical organs. The study's primary objective is to determine the experimental doses received by critical organs in patients undergoing these procedures. This study utilized an Alderson RANDO phantom outfitted with Thermoluminescent Dosemeters (TLDs) to experimentally measure the radiation doses received by various organs during ERCP and PTC procedures. This method provided direct and accurate data on organ-specific radiation exposure, contrasting with the traditional approach of relying on theoretical simulations. The analysis revealed that PTC generally results in higher radiation doses to organs compared to ERCP. Critical organs, such as the thyroid, spleen, liver, pancreas, ovaries, and uterus, were exposed to varying levels of radiation, with the thyroid and spleen receiving particularly high doses in PTC. The study also demonstrated that the per-minute radiation exposure was consistently higher in PTC across all examined organs. The study's findings underscore the significant radiation exposure associated with ERCP and PTC, with PTC posing a greater risk. Understanding these exposure levels is crucial for clinical decision-making, particularly when considering patients' pre-existing conditions and sensitivity to radiation. The study highlights the need for clinicians to carefully weigh the benefits of ERCP and PTC against the potential radiological risks. It suggests a preference for ERCP in situations where radiation exposure needs to be minimized. Furthermore, the findings advocate for ongoing advancements in medical imaging techniques to reduce radiation exposure, emphasizing the importance of patient safety in fluoroscopic examinations. This research contributes significantly to informed clinical decision-making, ensuring that the selection of diagnostic and therapeutic procedures aligns with the best interest of patient health and safety.

2.
Jpn J Radiol ; 42(9): 1058-1066, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38720059

RESUMEN

This study provides a comprehensive evaluation of the occupational radiation exposure faced by healthcare professionals during Endoscopic Retrograde Cholangiopancreatography (ERCP) procedures. Utilizing an anthropomorphic RANDO phantom equipped with Thermoluminescent Dosimeters (TLDs), we replicated ERCP scenarios to measure radiation doses received by medical staff. The study meticulously assessed radiation exposure in various corresponding body regions typically occupied by medical staff during ERCP, with a focus on eyes, thyroid, hands, and reproductive corresponding organ regions. The findings revealed significant variations in radiation doses across different body parts, highlighting areas of higher exposure and underscoring the need for improved protective measures and procedural adjustments. The effective radiation doses were calculated using standard protocols, considering the varying levels of protection offered by lead aprons and thyroid shields. The results demonstrate the substantial radiation exposure experienced by healthcare staff, particularly in regions not adequately shielded. This study emphasizes the necessity for enhanced radiation safety protocols in clinical settings, advocating for advanced protective equipment, training in radiation safety, and the exploration of alternative imaging modalities. The findings have crucial implications for both patient and staff safety, ensuring the continued efficacy and safety of ERCP and similar interventional procedures. This research contributes significantly to the field of occupational health and safety in interventional radiology, providing vital data for the development of safer medical practices.


Asunto(s)
Colangiopancreatografia Retrógrada Endoscópica , Exposición Profesional , Fantasmas de Imagen , Dosis de Radiación , Exposición a la Radiación , Protección Radiológica , Dosimetría Termoluminiscente , Humanos , Exposición Profesional/prevención & control , Exposición a la Radiación/prevención & control , Protección Radiológica/instrumentación , Protección Radiológica/métodos , Personal de Salud
3.
Curr Radiopharm ; 17(3): 276-284, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38288829

RESUMEN

INTRODUCTION: The most important toxicity of transarterial radioembolization therapy applied in liver malignancies is radiation pneumonitis and fibrosis due to hepatopulmonary shunt of Yttrium-90 (90Y) microspheres. Currently, Technetium-99m macroaggregated albumin (99mTc-MAA) scintigraphic images are used to estimate lung shunt fraction (LSF) before treatment. The aim of this study was to create a phantom to calculate exact LFS rates according to 99mTc activities in the phantom and to compare these rates with LSF values calculated from scintigraphic images. MATERIALS AND METHODS: A 3D-printed lung and liver phantom containing two liver tumors was developed from Polylactic Acid (PLA) material, which is similar to the normal-sized human body in terms of texture and density. Actual %LSFs were calculated by filling phantoms and tumors with 99mTc radionuclide. After the phantoms were placed in the water tank made of plexiglass material, planar, SPECT, and SPECT/CT images were obtained. The actual LSF ratio calculated from the activity amounts filled into the phantom was used for the verification of the quantification of scintigraphic images and the results obtained by the Simplicity90YTM method. RESULTS: In our experimental model, LSFs calculated from 99mTc activities filled into the lungs, normal liver, small tumor, and large tumor were found to be 0%, 6.2%, 10.8%, and 16.9%. According to these actual LSF values, LSF values were calculated from planar, SPECT/CT (without attenuation correction), and SPECT/CT (with both attenuation and scatter correction) scintigraphic images of the phantom. In each scintigraphy, doses were calculated for lung, small tumor, large tumor, normal liver, and Simplicity90YTM. The doses calculated from planar and SPECT/CT (NoAC+NoSC) images were found to be higher than the actual doses. The doses calculated from SPECT/CT (with AC+with SC) images and Simplicity90YTM were found to be closer to the real dose values. CONCLUSION: LSF is critical in dosimetry calculations of 90Y microsphere therapy. The newly introduced hepatopulmonary shunt phantom in this study is suitable for LSF verification for all models/brands of SPECT and SPECT/CT devices.


Asunto(s)
Embolización Terapéutica , Neoplasias Hepáticas , Fantasmas de Imagen , Radiofármacos , Agregado de Albúmina Marcado con Tecnecio Tc 99m , Radioisótopos de Itrio , Humanos , Neoplasias Hepáticas/radioterapia , Neoplasias Hepáticas/diagnóstico por imagen , Embolización Terapéutica/métodos , Radiofármacos/uso terapéutico , Radioisótopos de Itrio/uso terapéutico , Tomografía Computarizada por Tomografía Computarizada de Emisión de Fotón Único , Microesferas , Pulmón/diagnóstico por imagen , Pulmón/efectos de la radiación , Impresión Tridimensional , Hígado/diagnóstico por imagen
4.
Medicina (Kaunas) ; 59(3)2023 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-36984628

RESUMEN

Background and Objectives: Quality assurance is an integral part of brachytherapy. Traditionally, radiographic films have been used for source position verification, however, in many clinics, computerized tomography simulators have replaced conventional simulators, and computerized radiography systems have replaced radiographic film processing units. With these advances, the problem of controlling source position verification without traditional radiographic films and conventional simulators has appeared. Materials and Methods: In this study, we investigated an alternative method for source position verification for brachytherapy applications. Source positions were evaluated using Gafchromic™ RTQA2 and EBT3 film and visually compared to exposed RTQA radiochromic film when using a Nucletron Oldelft Simulix HP conventional simulator and a Gammamed 12-i brachytherapy device for performance evaluation. Gafchromic film autoradiography was performed with a linear accelerator (LINAC) on-board imager (OBI). Radiochromic films are very suitable for evaluation by visual inspection with a LINAC OBI. Results: The results showed that this type of low-cost, easy-to-find material can be used for verification purposes under clinical conditions. Conclusions: It can be concluded that source-position quality assurance may be performed through a LINAC OBI device.


Asunto(s)
Braquiterapia , Dosimetría por Película , Humanos , Dosificación Radioterapéutica , Dosimetría por Película/métodos , Braquiterapia/métodos , Tomografía Computarizada por Rayos X
5.
Bioengineering (Basel) ; 10(2)2023 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-36829709

RESUMEN

The segmentation of the liver is a difficult process due to the changes in shape, border, and density that occur in each section in computed tomography (CT) images. In this study, the Adding Inception Module-Unet (AIM-Unet) model, which is a hybridization of convolutional neural networks-based Unet and Inception models, is proposed for computer-assisted automatic segmentation of the liver and liver tumors from CT scans of the abdomen. Experimental studies were carried out on four different liver CT image datasets, one of which was prepared for this study and three of which were open (CHAOS, LIST, and 3DIRCADb). The results obtained using the proposed method and the segmentation results marked by the specialist were compared with the Dice similarity coefficient (DSC), Jaccard similarity coefficient (JSC), and accuracy (ACC) measurement parameters. In this study, we obtained the best DSC, JSC, and ACC liver segmentation performance metrics on the CHAOS dataset as 97.86%, 96.10%, and 99.75%, respectively, of the AIM-Unet model we propose, which is trained separately on three datasets (LiST, CHAOS, and our dataset) containing liver images. Additionally, 75.6% and 65.5% of the DSC tumor segmentation metrics were calculated on the proposed model LiST and 3DIRCADb datasets, respectively. In addition, the segmentation success results on the datasets with the AIM-Unet model were compared with the previous studies. With these results, it has been seen that the method proposed in this study can be used as an auxiliary tool in the decision-making processes of physicians for liver segmentation and detection of liver tumors. This study is useful for medical images, and the developed model can be easily developed for applications in different organs and other medical fields.

6.
Cancer Biother Radiopharm ; 37(1): 17-22, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34134512

RESUMEN

Background: The aim of this study is to clarify the critical organs that limit treatment scheme and also evaluate the validity of currently used critical organ threshold values in neuroendocrine tumor (NET) patients, receiving peptide receptor radionuclide therapy (PRRT) with Lutetium 177 (177Lu)-DOTATATE. Materials and Methods: Thirty-six NET patients (ages 16-73 years) who received 177Lu-DOTATATE treatment were evaluated retrospectively in this study. Dosimetric calculations were made using medical internal radionuclide dose method. For calculation of organ doses, Internal Dose Assessment at Organ Level/Exponential Modelling 1.1 software program was used. Follow-up data were used to determine the organ failure. Results: A total of 141 cycles and mean of 3.91 (±1.33) cycles were applied to the patients. A mean of 691 mCi (±257 mCi) 177Lu-DOTATATE infusion in total and a dose between 70 and 200 mCi per treatment was applied to patients. Seven of 36 patients reached 23 Gy renal dose limit. In these patients, although kidney doses were between 23 and 29 Gy, there was no diminution in renal functions during follow-up. Two of 36 patients reached total bone marrow dose of 2 Gy limit. Bone marrow suppression did not develop in these patients. Conclusion: The critical organs that seem to affect the treatment scheme in PRRT with 177Lu-DOTATATE are kidney and bone marrow. Although there are established threshold levels, derived from radiotherapy experience, more studies are needed to clarify these dose limits in systemic radionuclide therapies such as PRRT.


Asunto(s)
Tumores Neuroendocrinos , Compuestos Organometálicos , Adolescente , Adulto , Anciano , Humanos , Lutecio/uso terapéutico , Persona de Mediana Edad , Tumores Neuroendocrinos/patología , Tumores Neuroendocrinos/radioterapia , Octreótido/efectos adversos , Octreótido/uso terapéutico , Compuestos Organometálicos/efectos adversos , Tomografía de Emisión de Positrones , Radioisótopos/uso terapéutico , Cintigrafía , Radiofármacos , Estudios Retrospectivos , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...