Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Biol Chem ; 298(1): 101412, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34793835

RESUMEN

The N-terminal region (NTR) of ryanodine receptor (RyR) channels is critical for the regulation of Ca2+ release during excitation-contraction (EC) coupling in muscle. The NTR hosts numerous mutations linked to skeletal (RyR1) and cardiac (RyR2) myopathies, highlighting its potential as a therapeutic target. Here, we constructed two biosensors by labeling the mouse RyR2 NTR at domains A, B, and C with FRET pairs. Using fluorescence lifetime (FLT) detection of intramolecular FRET signal, we developed high-throughput screening (HTS) assays with these biosensors to identify small-molecule RyR modulators. We then screened a small validation library and identified several hits. Hits with saturable FRET dose-response profiles and previously unreported effects on RyR were further tested using [3H]ryanodine binding to isolated sarcoplasmic reticulum vesicles to determine effects on intact RyR opening in its natural membrane. We identified three novel inhibitors of both RyR1 and RyR2 and two RyR1-selective inhibitors effective at nanomolar Ca2+. Two of these hits activated RyR1 only at micromolar Ca2+, highlighting them as potential enhancers of excitation-contraction coupling. To determine whether such hits can inhibit RyR leak in muscle, we further focused on one, an FDA-approved natural antibiotic, fusidic acid (FA). In skinned skeletal myofibers and permeabilized cardiomyocytes, FA inhibited RyR leak with no detrimental effect on skeletal myofiber excitation-contraction coupling. However, in intact cardiomyocytes, FA induced arrhythmogenic Ca2+ transients, a cautionary observation for a compound with an otherwise solid safety record. These results indicate that HTS campaigns using the NTR biosensor can identify compounds with therapeutic potential.


Asunto(s)
Técnicas Biosensibles , Canal Liberador de Calcio Receptor de Rianodina , Animales , Calcio/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Ensayos Analíticos de Alto Rendimiento , Ratones , Músculo Esquelético/química , Músculo Esquelético/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/análisis , Canal Liberador de Calcio Receptor de Rianodina/metabolismo
2.
Proc Natl Acad Sci U S A ; 116(22): 10763-10772, 2019 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-31072926

RESUMEN

Voltage-gated sodium (NaV) and calcium channels (CaV) form targets for calmodulin (CaM), which affects channel inactivation properties. A major interaction site for CaM resides in the C-terminal (CT) region, consisting of an IQ domain downstream of an EF-hand domain. We present a crystal structure of fully Ca2+-occupied CaM, bound to the CT of NaV1.5. The structure shows that the C-terminal lobe binds to a site ∼90° rotated relative to a previous site reported for an apoCaM complex with the NaV1.5 CT and for ternary complexes containing fibroblast growth factor homologous factors (FHF). We show that the binding of FHFs forces the EF-hand domain in a conformation that does not allow binding of the Ca2+-occupied C-lobe of CaM. These observations highlight the central role of the EF-hand domain in modulating the binding mode of CaM. The binding sites for Ca2+-free and Ca2+-occupied CaM contain targets for mutations linked to long-QT syndrome, a type of inherited arrhythmia. The related NaV1.4 channel has been shown to undergo Ca2+-dependent inactivation (CDI) akin to CaVs. We present a crystal structure of Ca2+/CaM bound to the NaV1.4 IQ domain, which shows a binding mode that would clash with the EF-hand domain. We postulate the relative reorientation of the EF-hand domain and the IQ domain as a possible conformational switch that underlies CDI.


Asunto(s)
Calcio/química , Calmodulina/química , Canal de Sodio Activado por Voltaje NAV1.5/química , Sitios de Unión , Calcio/metabolismo , Calmodulina/genética , Calmodulina/metabolismo , Cristalografía , Motivos EF Hand , Humanos , Síndrome de QT Prolongado , Modelos Moleculares , Mutación , Canal de Sodio Activado por Voltaje NAV1.5/genética , Canal de Sodio Activado por Voltaje NAV1.5/metabolismo , Resonancia Magnética Nuclear Biomolecular , Unión Proteica , Conformación Proteica
3.
Sci Rep ; 8(1): 4483, 2018 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-29540853

RESUMEN

Voltage-gated sodium channels (NaV) are responsible for the rapid depolarization of many excitable cells. They readily inactivate, a process where currents diminish after milliseconds of channel opening. They are also targets for a multitude of disease-causing mutations, many of which have been shown to affect inactivation. A cluster of disease mutations, linked to Long-QT and Brugada syndromes, is located in a C-terminal EF-hand like domain of NaV1.5, the predominant cardiac sodium channel isoform. Previous studies have suggested interactions with the III-IV linker, a cytosolic element directly involved in inactivation. Here we validate and map the interaction interface using isothermal titration calorimetry (ITC) and NMR spectroscopy. We investigated the impact of various disease mutations on the stability of the domain, and found that mutations that cause misfolding of the EF-hand domain result in hyperpolarizing shifts in the steady-state inactivation curve. Conversely, mutations in the III-IV linker that disrupt the interaction with the EF-hand domain also result in large hyperpolarization shifts, supporting the interaction between both elements in intact channels. Disrupting the interaction also causes large late currents, pointing to a dual role of the interaction in reducing the population of channels entering inactivation and in stabilizing the inactivated state.


Asunto(s)
Susceptibilidad a Enfermedades , Motivos EF Hand , Mutación , Canales de Sodio Activados por Voltaje/genética , Canales de Sodio Activados por Voltaje/metabolismo , Sitios de Unión , Humanos , Activación del Canal Iónico , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Unión Proteica , Conformación Proteica , Pliegue de Proteína , Estabilidad Proteica , Relación Estructura-Actividad , Canales de Sodio Activados por Voltaje/química
4.
Proc Natl Acad Sci U S A ; 114(45): E9520-E9528, 2017 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-29078335

RESUMEN

Excitation-contraction (EC) coupling in skeletal muscle requires functional and mechanical coupling between L-type voltage-gated calcium channels (CaV1.1) and the ryanodine receptor (RyR1). Recently, STAC3 was identified as an essential protein for EC coupling and is part of a group of three proteins that can bind and modulate L-type voltage-gated calcium channels. Here, we report crystal structures of tandem-SH3 domains of different STAC isoforms up to 1.2-Å resolution. These form a rigid interaction through a conserved interdomain interface. We identify the linker connecting transmembrane repeats II and III in two different CaV isoforms as a binding site for the SH3 domains and report a crystal structure of the complex with the STAC2 isoform. The interaction site includes the location for a disease variant in STAC3 that has been linked to Native American myopathy (NAM). Introducing the mutation does not cause misfolding of the SH3 domains, but abolishes the interaction. Disruption of the interaction via mutations in the II-III loop perturbs skeletal muscle EC coupling, but preserves the ability of STAC3 to slow down inactivation of CaV1.2.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Canales de Calcio Tipo L/metabolismo , Animales , Sitios de Unión/fisiología , Calcio/metabolismo , Señalización del Calcio/fisiología , Fisura del Paladar/metabolismo , Cristalografía por Rayos X/métodos , Acoplamiento Excitación-Contracción/fisiología , Humanos , Hipertermia Maligna/metabolismo , Proteínas de la Membrana/metabolismo , Músculo Esquelético/metabolismo , Mutación/genética , Miotonía Congénita/metabolismo , Isoformas de Proteínas/metabolismo , Conejos , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Xenopus laevis/metabolismo
5.
Plant J ; 89(4): 651-670, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27859885

RESUMEN

The xyloglucan endotransglycosylase/hydrolase (XTH) gene family encodes enzymes of central importance to plant cell wall remodeling. The evolutionary history of plant XTH gene products is incompletely understood vis-à-vis the larger body of bacterial endoglycanases in Glycoside Hydrolase Family 16 (GH16). To provide molecular insight into this issue, high-resolution X-ray crystal structures and detailed enzyme kinetics of an extant transitional plant endoglucanase (EG) were determined. Functionally intermediate between plant XTH gene products and bacterial licheninases of GH16, Vitis vinifera EG16 (VvEG16) effectively catalyzes the hydrolysis of the backbones of two dominant plant cell wall matrix glycans, xyloglucan (XyG) and ß(1,3)/ß(1,4)-mixed-linkage glucan (MLG). Crystallographic complexes with extended oligosaccharide substrates reveal the structural basis for the accommodation of both unbranched, mixed-linked (MLG) and highly decorated, linear (XyG) polysaccharide chains in a broad, extended active-site cleft. Structural comparison with representative bacterial licheninases, a xyloglucan endotranglycosylase (XET), and a xyloglucan endohydrolase (XEH) outline the functional ramifications of key sequence deletions and insertions across the phylogenetic landscape of GH16. Although the biological role(s) of EG16 orthologs remains to be fully resolved, the present biochemical and tertiary structural characterization provides key insight into plant cell wall enzyme evolution, which will continue to inform genomic analyses and functional studies across species.


Asunto(s)
Cristalografía/métodos , Glicosiltransferasas/química , Glicosiltransferasas/metabolismo , Hidrolasas/química , Hidrolasas/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Vitis/enzimología , Vitis/metabolismo , Secuencia de Aminoácidos , Pared Celular/metabolismo , Evolución Molecular , Glucanos/metabolismo , Glicosiltransferasas/genética , Hidrolasas/genética , Oligosacáridos/metabolismo , Filogenia , Proteínas de Plantas/genética , Polisacáridos/metabolismo , Homología de Secuencia de Aminoácido , Xilanos/metabolismo
6.
J Am Chem Soc ; 137(35): 11391-8, 2015 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-26289584

RESUMEN

Transient biomolecular interactions are the cornerstones of the cellular machinery. The identification of the binding sites for low affinity molecular encounters is essential for the development of high affinity pharmaceuticals from weakly binding leads but is hindered by the lack of robust methodologies for characterization of weakly binding complexes. We introduce a paramagnetic ligand tagging approach that enables localization of low affinity protein-ligand binding clefts by detection and analysis of intermolecular protein NMR pseudocontact shifts, which are invoked by the covalent attachment of a paramagnetic lanthanoid chelating tag to the ligand of interest. The methodology is corroborated by identification of the low millimolar volatile anesthetic interaction site of the calcium sensor protein calmodulin. It presents an efficient route to binding site localization for low affinity complexes and is applicable to rapid screening of protein-ligand systems with varying binding affinity.


Asunto(s)
Fenómenos Magnéticos , Proteínas/metabolismo , Anestésicos/química , Anestésicos/metabolismo , Sitios de Unión , Calmodulina/química , Calmodulina/metabolismo , Elementos de la Serie de los Lantanoides/química , Ligandos , Espectroscopía de Resonancia Magnética , Éteres Metílicos/química , Éteres Metílicos/metabolismo , Modelos Moleculares , Unión Proteica , Conformación Proteica , Proteínas/química , Sevoflurano
7.
Structure ; 21(8): 1440-9, 2013 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-23871484

RESUMEN

Ryanodine receptors (RyRs) are calcium release channels located in the membrane of the endoplasmic and sarcoplasmic reticulum and play a major role in muscle excitation-contraction coupling. The cardiac isoform (RyR2) is the target for >150 mutations that cause catecholaminergic polymorphic ventricular tachycardia (CPVT) and other conditions. Here, we present the crystal structure of the N-terminal region of RyR2 (1-547), an area encompassing 29 distinct disease mutations. The protein folds up in three individual domains, which are held together via a central chloride anion that shields repulsive positive charges. Several disease mutant versions of the construct drastically destabilize the protein. The R420Q disease mutant causes CPVT and ablates chloride binding. The mutation results in reorientations of the first two domains relative to the third domain. These conformational changes likely activate the channel by destabilizing intersubunit interactions that are disrupted upon channel opening.


Asunto(s)
Canal Liberador de Calcio Receptor de Rianodina/química , Animales , Sitios de Unión , Bromuros/química , Cristalografía por Rayos X , Enlace de Hidrógeno , Ratones , Modelos Moleculares , Mutación Missense , Cloruro de Potasio/química , Compuestos de Potasio/química , Estabilidad Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Canal Liberador de Calcio Receptor de Rianodina/genética , Taquicardia Ventricular/genética
8.
Nat Commun ; 4: 1506, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23422674

RESUMEN

Ryanodine receptors are large channels that release Ca(2+) from the endoplasmic and sarcoplasmic reticulum. Hundreds of RyR mutations can cause cardiac and skeletal muscle disorders, yet detailed mechanisms explaining their effects have been lacking. Here we compare pseudo-atomic models and propose that channel opening coincides with widening of a cytoplasmic vestibule formed by the N-terminal region, thus altering an interface targeted by 20 disease mutations. We solve crystal structures of several disease mutants that affect intrasubunit domain-domain interfaces. Mutations affecting intrasubunit ionic pairs alter relative domain orientations, and thus couple to surrounding interfaces. Buried disease mutations cause structural changes that also connect to the intersubunit contact area. These results suggest that the intersubunit contact region between N-terminal domains is a prime target for disease mutations, direct or indirect, and we present a model whereby ryanodine receptors and inositol-1,4,5-trisphosphate receptors are activated by altering domain arrangements in the N-terminal region.


Asunto(s)
Enfermedad/genética , Mutación/genética , Subunidades de Proteína/química , Subunidades de Proteína/genética , Canal Liberador de Calcio Receptor de Rianodina/química , Canal Liberador de Calcio Receptor de Rianodina/genética , Animales , Humanos , Ligandos , Simulación del Acoplamiento Molecular , Desnaturalización Proteica , Estabilidad Proteica , Estructura Terciaria de Proteína , Conejos , Temperatura
9.
Proc Natl Acad Sci U S A ; 109(9): 3558-63, 2012 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-22331908

RESUMEN

Voltage-gated sodium channels underlie the rapid regenerative upstroke of action potentials and are modulated by cytoplasmic calcium ions through a poorly understood mechanism. We describe the 1.35 Å crystal structure of Ca(2+)-bound calmodulin (Ca(2+)/CaM) in complex with the inactivation gate (DIII-IV linker) of the cardiac sodium channel (Na(V)1.5). The complex harbors the positions of five disease mutations involved with long Q-T type 3 and Brugada syndromes. In conjunction with isothermal titration calorimetry, we identify unique inactivation-gate mutations that enhance or diminish Ca(2+)/CaM binding, which, in turn, sensitize or abolish Ca(2+) regulation of full-length channels in electrophysiological experiments. Additional biochemical experiments support a model whereby a single Ca(2+)/CaM bridges the C-terminal IQ motif to the DIII-IV linker via individual N and C lobes, respectively. The data suggest that Ca(2+)/CaM destabilizes binding of the inactivation gate to its receptor, thus biasing inactivation toward more depolarized potentials.


Asunto(s)
Calcio/fisiología , Calmodulina/química , Activación del Canal Iónico/fisiología , Canales de Sodio/química , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Síndrome de Brugada/genética , Calcio/química , Calmodulina/fisiología , Cristalografía por Rayos X , Humanos , Síndrome de QT Prolongado/genética , Sustancias Macromoleculares , Potenciales de la Membrana , Modelos Moleculares , Datos de Secuencia Molecular , Canal de Sodio Activado por Voltaje NAV1.5 , Técnicas de Placa-Clamp , Conformación Proteica , Mapeo de Interacción de Proteínas , Estructura Terciaria de Proteína , Proteínas Recombinantes de Fusión/química , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Sodio/metabolismo , Canales de Sodio/fisiología
10.
Structure ; 19(6): 790-8, 2011 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-21645850

RESUMEN

Mutations in the cardiac Ryanodine Receptor (RYR2) are linked to triggered arrhythmias. Removal of exon 3 results in a severe form of catecholaminergic polymorphic ventricular tachycardia (CPVT). This exon encodes secondary structure elements that are crucial for folding of the N-terminal domain (NTD), raising the question of why the deletion is neither lethal nor confers a loss of function. We determined the 2.3 Å crystal structure of the NTD lacking exon 3. The removal causes a structural rescue whereby a flexible loop inserts itself into the ß trefoil domain and increases thermal stability. The exon 3 deletion is not tolerated in the corresponding RYR1 domain. The rescue shows a novel mechanism by which RYR2 channels can adjust their Ca²âº release properties through altering the structure of the NTD. Despite the rescue, the deletion affects interfaces with other RYR2 domains. We propose that relative movement of the NTD is allosterically coupled to the pore region.


Asunto(s)
Exones/genética , Canal Liberador de Calcio Receptor de Rianodina/genética , Eliminación de Secuencia , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Enfermedades Genéticas Congénitas/genética , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Ratones , Modelos Moleculares , Datos de Secuencia Molecular , Miocardio/química , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Desplegamiento Proteico , Canal Liberador de Calcio Receptor de Rianodina/química , Homología Estructural de Proteína , Propiedades de Superficie , Taquicardia Ventricular/genética , Temperatura de Transición
11.
Nature ; 468(7323): 585-8, 2010 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-21048710

RESUMEN

Many physiological events require transient increases in cytosolic Ca(2+) concentrations. Ryanodine receptors (RyRs) are ion channels that govern the release of Ca(2+) from the endoplasmic and sarcoplasmic reticulum. Mutations in RyRs can lead to severe genetic conditions that affect both cardiac and skeletal muscle, but locating the mutated residues in the full-length channel structure has been difficult. Here we show the 2.5 Å resolution crystal structure of a region spanning three domains of RyR type 1 (RyR1), encompassing amino acid residues 1-559. The domains interact with each other through a predominantly hydrophilic interface. Docking in RyR1 electron microscopy maps unambiguously places the domains in the cytoplasmic portion of the channel, forming a 240-kDa cytoplasmic vestibule around the four-fold symmetry axis. We pinpoint the exact locations of more than 50 disease-associated mutations in full-length RyR1 and RyR2. The mutations can be classified into three groups: those that destabilize the interfaces between the three amino-terminal domains, disturb the folding of individual domains or affect one of six interfaces with other parts of the receptor. We propose a model whereby the opening of a RyR coincides with allosterically coupled motions within the N-terminal domains. This process can be affected by mutations that target various interfaces within and across subunits. The crystal structure provides a framework to understand the many disease-associated mutations in RyRs that have been studied using functional methods, and will be useful for developing new strategies to modulate RyR function in disease states.


Asunto(s)
Modelos Moleculares , Canal Liberador de Calcio Receptor de Rianodina/química , Canal Liberador de Calcio Receptor de Rianodina/genética , Animales , Mutación/genética , Estructura Terciaria de Proteína , Conejos , Canal Liberador de Calcio Receptor de Rianodina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...