Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Clin Chem Lab Med ; 52(5): 707-14, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24334431

RESUMEN

BACKGROUND: Somatic mutation analysis is standard of practice for solid tumors in order to identify therapeutic sensitizing and resistance mutations. Our laboratory routinely performed standalone PCR-based methods for mutations in several genes. Rapid discovery and introduction of new therapeutics has demanded additional genomic information for adequate management of the cancer patient. We evaluated a next generation sequencing assay, the Ion Torrent AmpliSeq Cancer Hotspot Panelv2 (CHPv2), capable of identifying multiple somatic mutations in 50 genes in a single assay. METHODS: Accuracy, precision, limit of detection, and specificity were evaluated using DNA from well-characterized cell lines, genetically engineered cell lines fixed and embedded in paraffin, and previously tested mutation positive or negative, formalin-fixed, paraffin-embedded (FFPE) tissues. Normal kidney, tonsil and colon FFPE tissues were used as controls. RESULTS: Accuracy studies showed 100% concordance in each patient sample between previous PCR results and the corresponding variants identified using the Ion Torrent panel. Precision studies gave consistent results when libraries were prepared from the same original DNA and were run on multiple 316 chips. The limit of detection was determined to be 5% for single nucleotide variants (SNVs) and 20% for insertions and deletions (indels). Specificity studies using normal FFPE tissue previously tested by PCR methods were also 100%. CONCLUSIONS: We have evaluated the performance of the AmpliSeq Cancer Panel Hotspotv2 and show that it is suitable for clinical testing. This next generation sequencing panel has allowed the laboratory to consolidate a broader range of molecular oncology testing to a single platform and single assay.


Asunto(s)
Análisis Mutacional de ADN , ADN/análisis , Secuenciación de Nucleótidos de Alto Rendimiento , Neoplasias/genética , Línea Celular Tumoral , ADN/aislamiento & purificación , Eliminación de Gen , Humanos , Mutagénesis Insercional , Adhesión en Parafina , Reacción en Cadena de la Polimerasa , Polimorfismo de Nucleótido Simple
2.
Clin Chem ; 59(10): 1481-8, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23775370

RESUMEN

BACKGROUND: Cystic fibrosis is a life-threatening genetic disorder that has been associated with mutations in the CFTR [cystic fibrosis transmembrane conductance regulator (ATP-binding cassette sub-family C, member 7)] gene. Hundreds of CFTR mutations have been detected to date. Current CFTR genotyping assays target a subset of these mutations, particularly a mutation panel recommended by the American College of Medical Genetics for carrier screening of the general population. Fast sequencing of the entire coding sequence in a scalable manner could expand the detection of CFTR mutations and facilitate management of costs and turnaround times in the clinical laboratory. METHODS: We describe a proof-of-concept CFTR assay that uses PCR target enrichment and next-generation sequencing on the Ion Torrent Personal Genome Machine™ (PGM™) platform. RESULTS: The scalability of the assay was demonstrated, with an average mean depth of coverage ranging from 500× to 3500×, depending on the number of multiplexed patient samples and the Ion Torrent chip used. In a blinded study of 79 previously genotyped patient DNA samples and cell lines, our assay detected most of the mutations, including single-nucleotide variants, small insertions and deletions, and large copy-number variants. The reproducibility was 100% for detecting mutations in independent runs. Our assay demonstrated high specificity, with only 2 false-positive calls (at 2184delA) found in 2 samples caused by a sequencing error in a homopolymer stretch of sequence. The detection rate for variants of unknown significance was very low in the targeted region. CONCLUSIONS: With continued optimization and system refinements, PGM sequencing promises to be a powerful, rapid, and scalable means of clinical diagnostic sequencing.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Línea Celular , Regulador de Conductancia de Transmembrana de Fibrosis Quística/sangre , Dosificación de Gen , Humanos , Mutación , Reacción en Cadena de la Polimerasa/métodos , Sensibilidad y Especificidad , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...