Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nature ; 619(7968): 143-150, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37380764

RESUMEN

Caloric restriction that promotes weight loss is an effective strategy for treating non-alcoholic fatty liver disease and improving insulin sensitivity in people with type 2 diabetes1. Despite its effectiveness, in most individuals, weight loss is usually not maintained partly due to physiological adaptations that suppress energy expenditure, a process known as adaptive thermogenesis, the mechanistic underpinnings of which are unclear2,3. Treatment of rodents fed a high-fat diet with recombinant growth differentiating factor 15 (GDF15) reduces obesity and improves glycaemic control through glial-cell-derived neurotrophic factor family receptor α-like (GFRAL)-dependent suppression of food intake4-7. Here we find that, in addition to suppressing appetite, GDF15 counteracts compensatory reductions in energy expenditure, eliciting greater weight loss and reductions in non-alcoholic fatty liver disease (NAFLD) compared to caloric restriction alone. This effect of GDF15 to maintain energy expenditure during calorie restriction requires a GFRAL-ß-adrenergic-dependent signalling axis that increases fatty acid oxidation and calcium futile cycling in the skeletal muscle of mice. These data indicate that therapeutic targeting of the GDF15-GFRAL pathway may be useful for maintaining energy expenditure in skeletal muscle during caloric restriction.


Asunto(s)
Metabolismo Energético , Factor 15 de Diferenciación de Crecimiento , Músculo Esquelético , Pérdida de Peso , Animales , Humanos , Ratones , Depresores del Apetito/metabolismo , Depresores del Apetito/farmacología , Depresores del Apetito/uso terapéutico , Restricción Calórica , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/metabolismo , Dieta Alta en Grasa , Ingestión de Alimentos/efectos de los fármacos , Metabolismo Energético/efectos de los fármacos , Factor 15 de Diferenciación de Crecimiento/metabolismo , Factor 15 de Diferenciación de Crecimiento/farmacología , Factor 15 de Diferenciación de Crecimiento/uso terapéutico , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Enfermedad del Hígado Graso no Alcohólico/complicaciones , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/terapia , Receptores Adrenérgicos beta/metabolismo , Pérdida de Peso/efectos de los fármacos
2.
Cells ; 12(11)2023 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-37296659

RESUMEN

Cardiomyopathy has become one of the leading causes of death in patients with Duchenne muscular dystrophy (DMD). We recently reported that the inhibition of the interaction between the receptor activator of nuclear factor κB ligand (RANKL) and receptor activator of nuclear factor κB (RANK) significantly improves muscle and bone functions in dystrophin-deficient mdx mice. RANKL and RANK are also expressed in cardiac muscle. Here, we investigate whether anti-RANKL treatment prevents cardiac hypertrophy and dysfunction in dystrophic mdx mice. Anti-RANKL treatment significantly reduced LV hypertrophy and heart mass, and maintained cardiac function in mdx mice. Anti-RANKL treatment also inhibited NFκB and PI3K, two mediators implicated in cardiac hypertrophy. Furthermore, anti-RANKL treatment increased SERCA activity and the expression of RyR, FKBP12, and SERCA2a, leading possibly to an improved Ca2+ homeostasis in dystrophic hearts. Interestingly, preliminary post hoc analyses suggest that denosumab, a human anti-RANKL, reduced left ventricular hypertrophy in two patients with DMD. Taken together, our results indicate that anti-RANKL treatment prevents the worsening of cardiac hypertrophy in mdx mice and could potentially maintain cardiac function in teenage or adult patients with DMD.


Asunto(s)
Distrofia Muscular de Duchenne , Ratones , Adulto , Animales , Adolescente , Humanos , Niño , Distrofia Muscular de Duchenne/complicaciones , Distrofia Muscular de Duchenne/tratamiento farmacológico , Distrofia Muscular de Duchenne/metabolismo , Ratones Endogámicos mdx , Ligando RANK/metabolismo , Miocardio/metabolismo , Receptor Activador del Factor Nuclear kappa-B/metabolismo , Cardiomegalia/tratamiento farmacológico , Cardiomegalia/metabolismo
3.
Biosci Rep ; 42(12)2022 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-36413081

RESUMEN

In healthy muscle, the rapid release of calcium ions (Ca2+) with excitation-contraction (E-C) coupling, results in elevations in Ca2+ concentrations which can exceed 10-fold that of resting values. The sizable transient changes in Ca2+ concentrations are necessary for the activation of signaling pathways, which rely on Ca2+ as a second messenger, including those involved with force generation, fiber type distribution and hypertrophy. However, prolonged elevations in intracellular Ca2+ can result in the unwanted activation of Ca2+ signaling pathways that cause muscle damage, dysfunction, and disease. Muscle employs several calcium handling and calcium transport proteins that function to rapidly return Ca2+ concentrations back to resting levels following contraction. This review will detail our current understanding of calcium handling during the decay phase of intracellular calcium transients in healthy skeletal and cardiac muscle. We will also discuss how impairments in Ca2+ transport can occur and how mishandling of Ca2+ can lead to the pathogenesis and/or progression of skeletal muscle myopathies and cardiomyopathies.


Asunto(s)
Calcio , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico , Calcio/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Proteínas de Unión al Calcio/metabolismo , Miocardio/metabolismo , Transporte Iónico , Músculo Esquelético/metabolismo
4.
Am J Physiol Cell Physiol ; 322(3): C382-C394, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35044855

RESUMEN

Sarcolipin (SLN) is a small regulatory protein that inhibits the sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) pump. When bound to SERCA, SLN reduces the apparent Ca2+ affinity of SERCA and uncouples SERCA Ca2+ transport from its ATP consumption. As such, SLN plays a direct role in altering skeletal muscle relaxation and energy expenditure. Interestingly, the expression of SLN is dynamic during times of muscle adaptation, in that large increases in SLN content are found in response to development, atrophy, overload, and disease. Several groups have suggested that increases in SLN, especially in dystrophic muscle, are deleterious as it may reduce muscle function and exacerbate already abhorrent intracellular Ca2+ levels. However, there is also significant evidence to show that increased SLN content is a beneficial adaptive mechanism that protects the SERCA pump and activates Ca2+ signaling and adaptive remodeling during times of cell stress. In this review, we first discuss the role for SLN in healthy muscle during both development and overload, where SLN has been shown to activate Ca2+ signaling to promote mitochondrial biogenesis, fiber-type shifts, and muscle hypertrophy. Then, with respect to muscle disease, we summarize the discrepancies in the literature as to whether SLN upregulation is adaptive or maladaptive in nature. This review is the first to offer the concept of SLN hormesis in muscle disease, wherein both too much and too little SLN are detrimental to muscle health. Finally, the underlying mechanisms which activate SLN upregulation are discussed, specifically acknowledging a potential positive feedback loop between SLN and Ca2+ signaling molecules.


Asunto(s)
Desarrollo de Músculos , Proteínas Musculares/metabolismo , Músculo Esquelético/enzimología , Atrofia Muscular/enzimología , Distrofias Musculares/enzimología , Proteolípidos/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Animales , Señalización del Calcio , Humanos , Mitocondrias Musculares/metabolismo , Mitocondrias Musculares/patología , Músculo Esquelético/patología , Músculo Esquelético/fisiopatología , Atrofia Muscular/patología , Atrofia Muscular/fisiopatología , Distrofias Musculares/patología , Distrofias Musculares/fisiopatología
5.
Endocrinology ; 163(1)2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34718519

RESUMEN

Pancreatic ß-cells can secrete insulin via 2 pathways characterized as KATP channel -dependent and -independent. The KATP channel-independent pathway is characterized by a rise in several potential metabolic signaling molecules, including the NADPH/NADP+ ratio and α-ketoglutarate (αKG). Prolyl hydroxylases (PHDs), which belong to the αKG-dependent dioxygenase superfamily, are known to regulate the stability of hypoxia-inducible factor α. In the current study, we assess the role of PHDs in vivo using the pharmacological inhibitor dimethyloxalylglycine (DMOG) and generated ß-cell-specific knockout (KO) mice for all 3 isoforms of PHD (ß-PHD1 KO, ß-PHD2 KO, and ß-PHD3 KO mice). DMOG inhibited in vivo insulin secretion in response to glucose challenge and inhibited the first phase of insulin secretion but enhanced the second phase of insulin secretion in isolated islets. None of the ß-PHD KO mice showed any significant in vivo defects associated with glucose tolerance and insulin resistance except for ß-PHD2 KO mice which had significantly increased plasma insulin during a glucose challenge. Islets from both ß-PHD1 KO and ß-PHD3 KO had elevated ß-cell apoptosis and reduced ß-cell mass. Isolated islets from ß-PHD1 KO and ß-PHD3 KO had impaired glucose-stimulated insulin secretion and glucose-stimulated increases in the ATP/ADP and NADPH/NADP+ ratio. All 3 PHD isoforms are expressed in ß-cells, with PHD3 showing the most distinct expression pattern. The lack of each PHD protein did not significantly impair in vivo glucose homeostasis. However, ß-PHD1 KO and ß-PHD3 KO mice had defective ß-cell mass and islet insulin secretion, suggesting that these mice may be predisposed to developing diabetes.


Asunto(s)
Secreción de Insulina , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Prolil Hidroxilasas/metabolismo , Isoformas de Proteínas/química , Adenosina Difosfato/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Apoptosis , Regulación de la Expresión Génica , Glucosa/metabolismo , Prueba de Tolerancia a la Glucosa , Homeostasis , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Ácidos Cetoglutáricos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , NADP/metabolismo , Fosforilación Oxidativa , Consumo de Oxígeno , Fenotipo , Dominios Proteicos
6.
Biochem J ; 477(21): 4281-4294, 2020 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-33111944

RESUMEN

Na+-K+-ATPase from mice lacking the γ subunit exhibits decreased thermal stability. Phospholamban (PLN) and sarcolipin (SLN) are small homologous proteins that regulate sarco(endo)plasmic reticulum Ca2+-ATPases (SERCAs) with properties similar to the γ subunit, through physical interactions with SERCAs. Here, we tested the hypothesis that PLN and SLN may protect against thermal inactivation of SERCAs. HEK-293 cells were co-transfected with different combinations of cDNAs encoding SERCA2a, PLN, a PLN mutant (N34A) that cannot bind to SERCA2a, and SLN. One-half of the cells were heat stressed at 40°C for 1 h (HS), and one-half were maintained at 37°C (CTL) before harvesting the cells and isolating microsomes. Compared with CTL, maximal SERCA activity was reduced by 25-35% following HS in cells that expressed either SERCA2a alone or SERCA2a and mutant PLN (N34A) whereas no change in maximal SERCA2a activity was observed in cells that co-expressed SERCA2a and either PLN or SLN following HS. Increases in SERCA2a carbonyl group content and nitrotyrosine levels that were detected following HS in cells that expressed SERCA2a alone were prevented in cells co-expressing SERCA2a with PLN or SLN, whereas co-expression of SERCA2a with mutant PLN (N34A) only prevented carbonyl group formation. In other experiments using knock-out mice, we found that thermal inactivation of SERCA was increased in cardiac left ventricle samples from Pln-null mice and in diaphragm samples from Sln-null mice, compared with WT littermates. Our results show that both PLN and SLN form a protective interaction with SERCA pumps during HS, preventing nitrosylation and oxidation of SERCA and thus preserving its maximal activity.


Asunto(s)
Proteínas de Unión al Calcio/farmacología , Proteínas Musculares/farmacología , Proteolípidos/farmacología , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Animales , ADN Complementario/metabolismo , Ratones , Ratones Noqueados , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Oxidación-Reducción/efectos de los fármacos , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/efectos de los fármacos , Temperatura
7.
Appl Physiol Nutr Metab ; 45(9): 1049-1053, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32379978

RESUMEN

Dietary nitrate has been shown to increase cytosolic calcium concentrations within the heart, which would necessitate greater calcium sequestration for relaxation. In the present study we demonstrate that while nitrate supplementation reduced blood pressure, calcium-handling protein content, sarco(endo)plasmic reticulum Ca-ATPase 2a (SERCA) enzymatic properties, and left ventricular function were not altered. In addition, nitrite did not alter in vitro SERCA activity. Combined, these data suggest that in healthy rats, dietary nitrate does not increase left ventricle SERCA-related calcium-handling properties. Novelty Dietary nitrate decreases blood pressure but does not alter left ventricular calcium-handling protein content or SERCA activity in healthy rats.


Asunto(s)
Nitratos/administración & dosificación , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/fisiología , Función Ventricular , Animales , Presión Sanguínea , Calcio , Dieta , Ventrículos Cardíacos , Masculino , Ratas , Ratas Sprague-Dawley
8.
Appl Physiol Nutr Metab ; 45(1): 1-10, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31116956

RESUMEN

We are currently facing an "obesity epidemic" worldwide. Promoting inefficient metabolism in muscle represents a potential treatment for obesity and its complications. Sarco(endo)plasmic reticulum (SR) Ca2+-ATPase (SERCA) pumps in muscle are responsible for maintaining low cytosolic Ca2+ concentration through the ATP-dependent pumping of Ca2+ from the cytosol into the SR lumen. SERCA activity has the potential to be a critical regulator of body mass and adiposity given that it is estimated to contribute upwards of 20% of daily energy expenditure. More interestingly, this fraction can be modified physiologically in the face of stressors, such as ambient temperature and diet, through its physical interaction with several regulators known to inhibit Ca2+ uptake and muscle function. In this review, we discuss advances in our understanding of Ca2+-cycling thermogenesis within skeletal muscle, focusing on SERCA and its protein regulators, which were thought previously to only modulate muscular contractility. Novelty ATP consumption by SERCA pumps comprises a large proportion of resting energy expenditure in muscle and is dynamically regulated through interactions with small SERCA regulatory proteins. SERCA efficiency correlates significantly with resting metabolism, such that individuals with a higher resting metabolic rate have less energetically efficient SERCA Ca2+ pumping in muscle (i.e., lower coupling ratio). Futile Ca2+ cycling is a versatile heat generating mechanism utilized by both skeletal muscle and beige fat.


Asunto(s)
ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico , Retículo Sarcoplasmático , Termogénesis/fisiología , Animales , Humanos , Ratones , Modelos Biológicos , Músculo Esquelético/fisiología , Retículo Sarcoplasmático/enzimología , Retículo Sarcoplasmático/metabolismo , Retículo Sarcoplasmático/fisiología
9.
Endocrinology ; 160(12): 2825-2836, 2019 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-31580427

RESUMEN

The transcription factor aryl hydrocarbon receptor nuclear translocator (ARNT)/hypoxia-inducible factor (HIF)-1ß (ARNT/HIF1ß) plays a key role in maintaining ß-cell function and has been shown to be one of the most downregulated transcription factors in islets from patients with type 2 diabetes. We have shown a role for ARNT/HIF1ß in glucose sensing and insulin secretion in vitro and no defects in in vivo glucose homeostasis. To gain a better understanding of the role of ARNT/HIF1ß in the development of diabetes, we placed control (+/+/Cre) and ß-cell-specific ARNT/HIF1ß knockout (fl/fl/Cre) mice on a high-fat diet (HFD). Unlike the control (+/+/Cre) mice, HFD-fed fl/fl/Cre mice had no impairment in in vivo glucose tolerance. The lack of impairment in HFD-fed fl/fl/Cre mice was partly due to an improved islet glucose-stimulated NADPH/NADP+ ratio and glucose-stimulated insulin secretion. The effects of the HFD-rescued insulin secretion in fl/fl/Cre islets could be reproduced by treating low-fat diet (LFD)-fed fl/fl/Cre islets with the lipid signaling molecule 1-monoacylglcyerol. This suggests that the defects seen in LFD-fed fl/fl/Cre islet insulin secretion involve lipid signaling molecules. Overall, mice lacking ARNT/HIF1ß in ß-cells have altered lipid signaling in vivo and are resistant to an HFD's ability to induce diabetes.


Asunto(s)
Translocador Nuclear del Receptor de Aril Hidrocarburo/metabolismo , Diabetes Mellitus Experimental/metabolismo , Células Secretoras de Insulina/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Translocador Nuclear del Receptor de Aril Hidrocarburo/genética , Diabetes Mellitus Experimental/etiología , Dieta Alta en Grasa , Diglicéridos , Glucosa/metabolismo , Homeostasis , Secreción de Insulina , Masculino , Ratones Noqueados , NADP/metabolismo
10.
Am J Physiol Cell Physiol ; 317(5): C1025-C1033, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31433693

RESUMEN

Calcineurin is a Ca2+/calmodulin (CaM)-dependent phosphatase that plays a critical role in promoting the slow fiber phenotype and myoblast fusion in skeletal muscle, thereby making calcineurin an attractive cellular target for enhancing fatigue resistance, muscle metabolism, and muscle repair. Neurogranin (Ng) is a CaM-binding protein thought to be expressed solely in brain and neurons, where it inhibits calcineurin signaling by sequestering CaM, thus lowering its cellular availability. Here, we demonstrate for the first time the expression of Ng protein and mRNA in mammalian skeletal muscle. Both protein and mRNA levels are greater in slow-oxidative compared with fast-glycolytic muscles. Coimmunoprecipitation of CaM with Ng in homogenates of C2C12 myotubes, mouse soleus, and human vastus lateralis suggests that these proteins physically interact. To determine whether Ng inhibits calcineurin signaling in muscle, we used Ng siRNA with C2C12 myotubes to reduce Ng protein levels by 60%. As a result of reduced Ng expression, C2C12 myotubes had enhanced CaM-calcineurin binding and calcineurin signaling as indicated by reduced phosphorylation of nuclear factor of activated T cells and increased utrophin mRNA. In addition, calcineurin signaling affects the expression of myogenin and stabilin-2, which are involved in myogenic differentiation and myoblast fusion, respectively. Here, we found that both myogenin and stabilin-2 were significantly elevated by Ng siRNA in C2C12 cells, concomitantly with an increased fusion index. Taken together, these results demonstrate the expression of Ng in mammalian skeletal muscle where it appears to be a novel regulator of calcineurin signaling.


Asunto(s)
Calcineurina/biosíntesis , Músculo Esquelético/metabolismo , Mioblastos/metabolismo , Neurogranina/biosíntesis , Transducción de Señal/fisiología , Animales , Calcineurina/genética , Expresión Génica , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Músculo Esquelético/citología , Neurogranina/genética , Adulto Joven
11.
Neuroscience ; 412: 160-174, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31181370

RESUMEN

A single session of aerobic exercise may offer one means to "prime" motor regions to be more receptive to the acquisition of a motor skill; however, the mechanisms whereby this priming may occur are not clear. One possible explanation may be related to the post-translational modification of plasticity-related receptors and their associated intracellular signaling molecules, given that these proteins are integral to the development of synaptic plasticity. In particular, phosphorylation governs the biophysical properties (e.g., Ca2+ conductance) and the migratory patterns (i.e., trafficking) of plasticity-related receptors by altering the relative density of specific receptor subunits at synapses. We hypothesized that a single session of exercise would alter the subunit phosphorylation of plasticity-related receptors (AMPA receptors, NMDA receptors) and signaling molecules (PKA, CaMKII) in a manner that would serve to prime motor cortex. Young, male Sprague-Dawley rats (n = 24) were assigned to either exercise (Moderate, Exhaustion), or non-exercising (Sedentary) groups. Immediately following a single session of treadmill exercise, whole tissue homogenates were prepared from both the motor cortex and hippocampus. We observed a robust (1.2-2.0× greater than sedentary) increase in tyrosine phosphorylation of AMPA (GluA1,2) and NMDA (GluN2A,B) receptor subunits, and a clear indication that exercise preferentially affects pPKA over pCaMKII. The changes were found, specifically, following moderate, but not maximal, acute aerobic exercise in both motor cortex and hippocampus. Given the requirement for these proteins during the early phases of plasticity induction, the possibility exists that exercise-induced priming may occur by altering the phosphorylation of plasticity-related proteins.


Asunto(s)
Hipocampo/metabolismo , Corteza Motora/metabolismo , Plasticidad Neuronal/fisiología , Condicionamiento Físico Animal/fisiología , Animales , Masculino , Fosforilación , Ratas , Ratas Sprague-Dawley , Receptores AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo
12.
Can J Physiol Pharmacol ; 97(5): 429-435, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30661369

RESUMEN

The amount of calcium released from the sarcoplasmic reticulum in skeletal muscle rapidly declines during repeated twitch contractions. In this study, we test the hypothesis that caffeine can mitigate these contraction-induced declines in calcium release. Lumbrical muscles were isolated from male C57BL/6 mice and loaded with the calcium-sensitive indicator, AM-furaptra. Muscles were then stimulated at 8 Hz for 2.0 s in the presence or absence of 0.5 mM caffeine, at either 30 °C or 37 °C. The amplitude and area of the furaptra-based intracellular calcium transients and force produced during twitch contractions were calculated. For each of these measures, the values for twitch 16 relative to twitch 1 were higher in the presence of caffeine than in the absence of caffeine at both temperatures. We conclude that caffeine can attenuate contraction-induced diminutions of calcium release during repeated twitch contractions, thereby contributing to the inotropic effects of caffeine.


Asunto(s)
Cafeína/farmacología , Calcio/metabolismo , Espacio Intracelular/efectos de los fármacos , Espacio Intracelular/metabolismo , Contracción Muscular/efectos de los fármacos , Músculos/efectos de los fármacos , Músculos/fisiología , Animales , Fenómenos Biomecánicos/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Extremidad Superior
13.
Am J Physiol Endocrinol Metab ; 316(3): E432-E442, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30601702

RESUMEN

The sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) pump is a major contributor to skeletal muscle Ca2+ homeostasis and metabolic rate. SERCA activity can become adaptively uncoupled by its regulator sarcolipin (SLN) to increase the energy demand of Ca2+ pumping, preventing excessive obesity and glucose intolerance in mice. Several other SERCA regulators bear structural and functional resemblance to SLN, including phospholamban (PLN). Here, we sought to examine whether endogenous levels of skeletal muscle PLN control SERCA Ca2+ pumping efficiency and whole body metabolism. Using PLN-null mice ( Pln-/-), we found that soleus (SOL) muscle's SERCA pumping efficiency (measured as an apparent coupling ratio: Ca2+ uptake/ATP hydrolysis) was unaffected by PLN. Expression of Ca2+-handling proteins within the SOL, including SLN, were comparable between Pln-/- and wild-type (WT) littermates, as were fiber-type characteristics. Not surprisingly then, Pln-/- mice developed a similar degree of diet-induced obesity and glucose intolerance as WT controls when given a "Western" high-fat diet. Lack of an excessively obesogenic phenotype of Pln-/- could not be explained by compensation from skeletal muscle SLN or brown adipose tissue uncoupling protein-1 content. In agreement with several other reports, our study lends support to the notion that PLN serves a functionally distinct role from that of SLN in skeletal muscle physiology.


Asunto(s)
Proteínas de Unión al Calcio/genética , Intolerancia a la Glucosa/genética , Músculo Esquelético/metabolismo , Obesidad/genética , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Animales , Dieta Occidental , Intolerancia a la Glucosa/metabolismo , Ratones , Ratones Noqueados , Proteínas Musculares/metabolismo , Obesidad/metabolismo , Proteolípidos/metabolismo , Proteína Desacopladora 1/metabolismo
14.
Behav Brain Res ; 359: 853-860, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30041008

RESUMEN

Typical responses in muscle following acute aerobic exercise have been well documented, but the responses in brain have remained relatively unexplored. Recent reports suggest that a single bout of aerobic exercise can prime motor regions of the human brain to experience use-dependent plasticity, however, the mechanisms underlying this priming phenomenon are unclear. As a result, we asked whether a graded test to exhaustion (GXT), the most widely employed test to examine relationships between exercise and integrated responses within the musculoskeletal, cardiopulmonary, and neuropsychological systems, would be able to upregulate the expression of plasticity-related proteins in sensorimotor cortex in rats. We examined immediate responses in animals following either a GXT, or two resting conditions: non-exercising treadmill controls (TC), and acclimatization controls (AC). Young, male Sprague-Dawley rats (n = 20) on a reverse light cycle (12 h/12 h) were exposed to a treadmill acclimatization procedure consisting of 8 days of increasing exercise intensity (10 m/min up to 25 m/min) for 10 min at the same time each day. The acclimatization was followed by 2 days of rest to reduce any carryover effects. On testing day, rats performed either a GXT, or rested (TC and AC), were then sacrificed and sensorimotor cortex dissected. Homogenates were probed for a physiological marker of stress (HSP 70), and plasticity-related proteins (CaMKII, GluN2A, GluN1, GluA1, GluA2) by Western blotting analysis. Both our acclimatization protocol and single event GXT yielded no observable differences in protein expression, suggesting that single session exercise does not prime brain via altered plasticity-related protein expression.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Consumo de Oxígeno/fisiología , Condicionamiento Físico Animal , Receptores de N-Metil-D-Aspartato/metabolismo , Corteza Sensoriomotora/fisiología , Análisis de Varianza , Animales , Biotina/análogos & derivados , Biotina/metabolismo , Dextranos/metabolismo , Prueba de Esfuerzo , Masculino , Ratas , Ratas Sprague-Dawley , Factores de Tiempo , Aglutinina del Germen de Trigo-Peroxidasa de Rábano Silvestre Conjugada/metabolismo
15.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1863(7): 700-711, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29627383

RESUMEN

Lysophosphatidic acid acyltransferase (LPAAT) δ/acylglycerophosphate acyltransferase 4 is a mitochondrial enzyme and one of five homologues that catalyze the acyl-CoA-dependent synthesis of phosphatidic acid (PA) from lysophosphatidic acid. We studied skeletal muscle LPAATδ and found highest levels in soleus, a red oxidative fibre-type that is rich in mitochondria, and lower levels in extensor digitorum longus (EDL) (white glycolytic) and gastrocnemius (mixed fibre-type). Using Lpaatδ-deficient mice, we found no change in soleus or EDL mass, or in treadmill time-to-exhaustion compared to wildtype littermates. There was, however, a significant reduction in the proportion of type I and type IIA fibres in EDL but, surprisingly, not soleus, where these fibre-types predominate. Also unexpectedly, there was no impairment in force generation by EDL, but a significant reduction by soleus. Oxidative phosphorylation and activity of complexes I, I + II, III, and IV in soleus mitochondria was unchanged and therefore could not explain this effect. However, pyruvate dehydrogenase activity was significantly reduced in Lpaatδ-/- soleus and EDL. Analysis of cellular lipids indicated no difference in soleus triacylglycerol, but specific elevations in soleus PA and phosphatidylethanolamine levels, likely due to a compensatory upregulation of Lpaatß and Lpaatε in Lpaatδ-/- mice. An anabolic effect for PA as an activator of skeletal muscle mTOR has been reported, but we found no change in serine 2448 phosphorylation, indicating reduced soleus force generation is unlikely due to the loss of mTOR activation by a specific pool of LPAATδ-derived PA. Our results identify an important role for LPAATδ in soleus and EDL.


Asunto(s)
1-Acilglicerol-3-Fosfato O-Aciltransferasa/fisiología , Contracción Muscular/fisiología , Fibras Musculares Esqueléticas/fisiología , Animales , Masculino , Ratones , Ratones Endogámicos C57BL , Fibras Musculares Esqueléticas/química , Fosforilación Oxidativa , Ácidos Fosfatidicos/análisis , Fosfatidiletanolaminas/análisis , Complejo Piruvato Deshidrogenasa/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Regulación hacia Arriba
17.
Lipids Health Dis ; 17(1): 47, 2018 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-29534725

RESUMEN

BACKGROUND: An increase in phosphatidylcholine:phosphatidylethanolamine (PC:PE) and a decrease in fatty acyl chain length, monounsaturated:polyunsaturated (MUFA:PUFA) fatty acyl ratio reduces SERCA activity in liposomes and in mouse models of obesity and muscular dystrophy. We have previously shown that maximal SERCA activity is significantly reduced in mechanically overloaded (OVL) plantaris, however, whether changes in PC:PE ratio or fatty acyl composition may contribute to the alterations in maximal SERCA activity remain unknown. Here, we tested the hypotheses that in OVL plantaris 1) PC:PE ratio would negatively correlate with maximal SERCA activity and 2) PC fatty acyl chain length (ACL) and/or MUFA:PUFA ratio would positively correlate with maximal SERCA activity. METHODS: To overload plantaris in mice, we transected the soleus and gastrocnemius tendons from one leg, while the contralateral leg underwent a sham surgery. After two weeks, plantaris muscles were extracted, homogenized and processed for SERCA activity and lipid analyses. Specifically, we performed HPTLC densitometry to examine changes in PC, PE, and the ratio of PC:PE. We also performed gas chromatography to assess any potential changes to fatty acyl composition. RESULTS: SERCA activity was significantly reduced in OVL plantaris compared with sham. Coinciding with this, we found a significant increase in PC but not PE in OVL plantaris. In turn, there was an increase in PC:PE but did not reach significance (p = 0.09). However, we found a significant negative correlation between PC:PE and maximal SERCA activity. Fatty acyl composition of PE remained similar between OLV and sham and PC demonstrated higher percent mole fraction of 17:1, 18:1, and ACL compared to sham. In addition, PC ACL, % MUFA, % PUFA, or MUFA:PUFA did not significantly correlate with maximal SERCA activity. CONCLUSIONS: Our results indicate that the phospholipid headgroup PC:PE negatively correlated and could potentially contribute to reductions in SERCA activity seen in functionally overloaded plantaris. In contrast, fatty acyl chain (ACL, % MUFA, % PUFA, MUFA:PUFA) did not correlate with maximal SERCA activity. Future studies will determine whether altering PC:PE with genetic and dietary interventions can influence SERCA activity and ultimately change the physiological outcome in response to muscle overloading.


Asunto(s)
Fosfatidilcolinas/metabolismo , Fosfatidiletanolaminas/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Animales , Ácidos Grasos Omega-3/metabolismo , Ratones , Músculo Esquelético/metabolismo , Fosfatidilcolinas/química , Fosfatidiletanolaminas/química , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/química
18.
Biochem Biophys Res Commun ; 495(1): 499-505, 2018 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-29127005

RESUMEN

The capacity for skeletal muscle to repair from daily insults as well as larger injuries is a vital component to maintaining muscle health over our lifetime. Given the importance of skeletal muscle for our physical and metabolic well-being, identifying novel factors mediating the growth and repair of skeletal muscle will thus build our foundational knowledge and help lead to potential therapeutic avenues for muscle wasting disorders. To that end, we investigated the expression of T-cell death associated gene 51 (TDAG51) during skeletal muscle repair and studied the response of TDAG51 deficient (TDAG51-/-) mice to chemically-induced muscle damage. TDAG51 mRNA and protein expression within uninjured skeletal muscle is almost undetectable but, in response to chemically-induced muscle damage, protein levels increase by 5 days post-injury and remain elevated for up to 10 days of regeneration. To determine the impact of TDAG51 deletion on skeletal muscle form and function, we compared adult male TDAG51-/- mice with age-matched wild-type (WT) mice. Body and muscle mass were not different between the two groups, however, in situ muscle testing demonstrated a significant reduction in force production both before and after fatiguing contractions in TDAG51-/- mice. During the early phases of the regenerative process (5 days post-injury), TDAG51-/- muscles display a significantly larger area of degenerating muscle tissue concomitant with significantly less regenerating area compared to WT (as demonstrated by embryonic myosin heavy chain expression). Despite these early deficits in regeneration, TDAG51-/- muscles displayed no morphological deficits by 10 days post injury compared to WT mice. Taken together, the data presented herein demonstrate TDAG51 expression to be upregulated in damaged skeletal muscle and its absence attenuates the early phases of muscle regeneration.


Asunto(s)
Eliminación de Gen , Músculo Esquelético/fisiología , Regeneración , Factores de Transcripción/genética , Regulación hacia Arriba , Animales , Línea Celular , Masculino , Ratones Endogámicos C57BL , Fatiga Muscular , Músculo Esquelético/lesiones , Músculo Esquelético/patología , Músculo Esquelético/ultraestructura , ARN Mensajero/genética , Factores de Transcripción/metabolismo
20.
Obesity (Silver Spring) ; 25(10): 1699-1706, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28857453

RESUMEN

OBJECTIVE: Adipose tissue beta-adrenergic signaling is attenuated in obesity and insulin resistance. It has been previously demonstrated that prior exercise training protects against short-term, high-fat diet (HFD)-induced weight gain and glucose intolerance. This study aimed to determine whether prior exercise training results in altered beta-adrenergic and lipolytic signaling in adipose tissue when challenged with a HFD. METHODS: Male C57BL/6J mice underwent 4 weeks of treadmill training (1 h/d, 5 d/wk). Twenty-four hours after the final bout of exercise, mice were fed a HFD (60% kcal lard) for 4 days. RESULTS: Serum fatty acids, beta-adrenergic signaling (phosphorylated ERK, hormone-sensitive lipase, and p38), and perilipin 1 content were greater in epididymal white adipose tissue (eWAT) from previously trained mice. These changes were not evident in eWAT from trained mice prior to the HFD and were not secondary to alterations in insulin responsiveness or catecholamine concentrations. CL 316,243-mediated increases in hormone-sensitive lipase phosphorylation and fatty acid accumulation in the media were greater in adipose tissue explants from previously trained mice fed a HFD. CONCLUSIONS: These findings suggest that previous training increases adipose tissue beta-adrenergic responsiveness to a short-term HFD. This may help to explain the protective effect of prior exercise training against the deleterious effects of a HFD.


Asunto(s)
Dieta Alta en Grasa/efectos adversos , Condicionamiento Físico Animal/métodos , Receptores Adrenérgicos beta/metabolismo , Animales , Masculino , Ratones , Ratones Endogámicos C57BL , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...