Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Microbiol ; 15: 1340585, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38371939

RESUMEN

Bacterial infections represent a key public health issue due to the occurrence of multidrug-resistant bacteria. Recently, the amount of data supporting the dynamic control of epigenetic pathways by environmental cues has triggered research efforts toward the clarification of their role in microbial infections. Among protein post-translational modifications, reversible acetylation is the most implicated in the feedback to environmental stimuli and in cellular homeostasis. Accordingly, the latest studies identified the histone deacetylase 6 (HDAC6) enzyme as a crucial player in the complex molecular machinery underlying bacterial clearance or killing. A very important milestone for the elucidation of the consequence of HDAC6 activity in bacterial infections is herein described, unveiling for the first time the role of a potent HDAC6 inhibitor in interfering with biofilm formation and modulating virulence factors of P. aeruginosa. We demonstrated that compound F2F-2020202 affected the production of some important virulence factors in P. aeruginosa, namely pyocyanin and rhamnolipids, clearly impairing its ability to form biofilm. Furthermore, evidence of possible QS involvement is supported by differential regulation of specific genes, namely RhlI, phAz1, and qsrO. The data herein obtained also complement and in part explain our previous results with selective HDAC6 inhibitors able to reduce inflammation and bacterial load in chronic infection models recapitulating the cystic fibrosis (CF) phenotype. This study fosters future in-depth investigation to allow the complete elucidation of the molecular mechanisms underlying HDAC6's role in bacterial infections.

2.
Eur J Med Chem ; 264: 115981, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38086192

RESUMEN

The occurrence of increased antibiotic resistance has reduced the availability of drugs effective in the control of infectious diseases, especially those caused by various combinations of bacteria and/or fungi that are often associated with poorer patient outcomes. In the hunt for novel antibiotics of interest to treat polymicrobial diseases, molecules bearing guanidine moieties have recently come to the fore in designing and optimizing antimicrobial agents. Due to their remarkable antibacterial and antifungal activities, labdane diterpenes are also attracting increasing interest in antimicrobial drug discovery. In this study, six different guanidines prenylated with labdanic fragments were synthesized and evaluated for their antimicrobial properties. Assays were carried out against both non-resistant and antibiotic-resistant bacteria strains, while their possible antifungal activities have been tested on the yeast Candida albicans. Two of the synthesized compounds, namely labdan-8,13(R)-epoxy-15-oyl guanidine and labdan-8,13(S)-epoxy-15-oyl guanidine, were finally selected as the best candidates for further developments in drug discovery, due to their antimicrobial effects on both Gram-negative and Gram-positive bacterial strains, their fungicide action, and their moderate toxicity in vivo on zebrafish embryos. The study also provides insights into the structure-activity relationships of the guanidine-functionalized labdane-type diterpenoids.


Asunto(s)
Antiinfecciosos , Diterpenos , Animales , Humanos , Antifúngicos/farmacología , Guanidina/farmacología , Pez Cebra , Antiinfecciosos/farmacología , Antibacterianos/farmacología , Bacterias , Diterpenos/farmacología , Candida albicans , Guanidinas/farmacología , Pruebas de Sensibilidad Microbiana
3.
Front Nutr ; 10: 1143004, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37599675

RESUMEN

Obesity is associated with gastrointestinal (GI) tract and central nervous system (CNS) disorders. High-fat diet (HFD) feeding-induced obesity in mice induces dysbiosis, causing a shift toward bacteria-derived metabolites with detrimental effects on metabolism and inflammation: events often contributing to the onset and progression of both GI and CNS disorders. Palmitoylethanolamide (PEA) is an endogenous lipid mediator with beneficial effects in mouse models of GI and CNS disorders. However, the mechanisms underlining its enteroprotective and neuroprotective effects still need to be fully understood. Here, we aimed to study the effects of PEA on intestinal inflammation and microbiota alterations resulting from lipid overnutrition. Ultramicronized PEA (30 mg/kg/die per os) was administered to HFD-fed mice for 7 weeks starting at the 12th week of HFD regimen. At the termination of the study, the effects of PEA on inflammatory factors and cells, gut microbial features and tryptophan (TRP)-kynurenine metabolism were evaluated. PEA regulates the crosstalk between the host immune system and gut microbiota via rebalancing colonic TRP metabolites. PEA treatment reduced intestinal immune cell recruitment, inflammatory response triggered by HFD feeding, and corticotropin-releasing hormone levels. In particular, PEA modulated HFD-altered TRP metabolism in the colon, rebalancing serotonin (5-HT) turnover and reducing kynurenine levels. These effects were associated with a reshaping of gut microbiota composition through increased butyrate-promoting/producing bacteria, such as Bifidobacterium, Oscillospiraceae and Turicibacter sanguinis, with the latter also described as 5-HT sensor. These data indicate that the rebuilding of gut microbiota following PEA supplementation promotes host 5-HT biosynthesis, which is crucial in regulating intestinal function.

4.
Int J Mol Sci ; 24(11)2023 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-37298727

RESUMEN

Gut dysbiosis has been involved in the pathogenesis and progression of Parkinson's disease (PD), but the mechanisms through which gut microbiota (GM) exerts its influences deserve further study. Recently, we proposed a two-hit mouse model of PD in which ceftriaxone (CFX)-induced dysbiosis amplifies the neurodegenerative phenotype generated by striatal 6-hydroxydopamine (6-OHDA) injection in mice. Low GM diversity and the depletion of key gut colonizers and butyrate producers were the main signatures of GM alteration in this model. Here, we used the phylogenetic investigation of communities by reconstruction of unobserved states (PICRUSt2) to unravel candidate pathways of cell-to-cell communication associated with dual-hit mice and potentially involved in PD progression. We focused our analysis on short-chain fatty acids (SCFAs) metabolism and quorum sensing (QS) signaling. Based on linear discriminant analysis, combined with the effect size results, we found increased functions linked to pyruvate utilization and a depletion of acetate and butyrate production in 6-OHDA+CFX mice. The specific arrangement of QS signaling as a possible result of the disrupted GM structure was also observed. With this exploratory study, we suggested a scenario in which SCFAs metabolism and QS signaling might represent the effectors of gut dysbiosis potentially involved in the designation of the functional outcomes that contribute to the exacerbation of the neurodegenerative phenotype in the dual-hit animal model of PD.


Asunto(s)
Enfermedad de Parkinson , Ratones , Animales , Enfermedad de Parkinson/metabolismo , Disbiosis/metabolismo , Filogenia , Oxidopamina , Butiratos
5.
Front Chem ; 11: 1126427, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36998572

RESUMEN

The [1,2,3]-triazolo [1,5-a] quinoxalin-4(5H)-one scaffold and its analogues triazole-fused heterocyclic compounds are relevant structural templates in both natural and synthetic biologically active compounds. However, their medicinal chemistry applications are often limited due to the lack of synthetic protocols combining straightforward generation of the central core while also allowing extensive decoration activity for drug discovery purposes. Herein, we report a "refreshed" synthesis of the [1,2,3]-triazolo [1,5-a]quinoxalin-4(5H)-one core, encompassing the use of eco-compatible catalysts and reaction conditions. We have also performed a sustainable and extensive derivatization campaign at both the endocyclic amide nitrogen and the ester functionality, comprehensively exploring the reaction scope and overcoming some of the previously reported difficulties in introducing functional groups on this structural template. Finally, we unveiled a preliminary biological investigation for the newly generated chemical entities. Our assessment of the compounds on different bacterial species (two S. aureus strains, three P. aeruginosa strains, K. pneumonia), and two fungal C. albicans strains, as well as the evaluation of their activity on S. epidermidis biofilm formation, foster further optimization for the retrieved hit compounds 9, 14, and 20.

6.
Int J Mol Sci ; 23(12)2022 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-35742813

RESUMEN

Recent evidence highlights Parkinson's disease (PD) initiation in the gut as the prodromal phase of neurodegeneration. Gut impairment due to microbial dysbiosis could affect PD pathogenesis and progression. Here, we propose a two-hit model of PD through ceftriaxone (CFX)-induced dysbiosis and gut inflammation before the 6-hydroxydopamine (6-OHDA) intrastriatal injection to mimic dysfunctional gut-associated mechanisms preceding PD onset. Therefore, we showed that dysbiosis and gut damage amplified PD progression, worsening motor deficits induced by 6-OHDA up to 14 days post intrastriatal injection. This effect was accompanied by a significant increase in neuronal dopaminergic loss (reduced tyrosine hydroxylase expression and increased Bcl-2/Bax ratio). Notably, CFX pretreatment also enhanced systemic and colon inflammation of dual-hit subjected mice. The exacerbated inflammatory response ran in tandem with a worsening of colonic architecture and gut microbiota perturbation. Finally, we demonstrated the beneficial effect of post-biotic sodium butyrate in limiting at once motor deficits, neuroinflammation, and colon damage and re-shaping microbiota composition in this novel dual-hit model of PD. Taken together, the bidirectional communication of the microbiota-gut-brain axis and the recapitulation of PD prodromal/pathogenic features make this new paradigm a useful tool for testing or repurposing new multi-target compounds in the treatment of PD.


Asunto(s)
Disbiosis , Enfermedad de Parkinson , Animales , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Butiratos/farmacología , Butiratos/uso terapéutico , Disbiosis/patología , Inflamación/patología , Ratones , Oxidopamina , Enfermedad de Parkinson/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...