Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Plant Dis ; 107(1): 116-124, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35640956

RESUMEN

Xanthomonas fragariae causes strawberry angular leaf spot (ALS), an important disease for the strawberry nursery industry in North America. To identify potential inoculum sources, the survival of X. fragariae was examined on the surfaces of 11 common materials found in nurseries: corrugated cardboard, cotton balls, cotton cloth (t-shirt), strawberry leaf, sheet metal, plastic, rubber, Tyvek, wood (balsa), glass (microscope slide), and latex (latex glove). Prefabricated rectangular samples (7.62 by 2.54 cm) of each material were immersed in a bacterial suspension for 15 min, after which the samples were stored at approximately 20°C (room temperature) or -4°C (the cold storage temperature for dormant plants in strawberry nurseries) for 1, 3, 7, 14, 30, 60, 90, 180, 270, and 365 days after inoculation (DAI). After the storage period elapsed, bacteria were recovered from the surfaces of each of the samples with phosphate-buffered saline (PBS)-soaked cotton balls. Survival rate was determined with a viability real-time quantitative PCR procedure and in a plant bioassay that involved rub inoculation of strawberry leaflets with the PBS-soaked cotton balls used to recover bacteria from the samples. Results showed that X. fragariae could survive on all surfaces but that survival rate differed among materials and storage temperature. All materials were capable of harboring viable bacteria up to 7 DAI when stored at -4°C based on the formation of lesions on inoculated leaves in the plant bioassay. The longest survival observed was 270 DAI on cardboard stored at -4°C. At room temperature, cardboard, cotton balls, cotton t-shirt, and strawberry leaf tissue supported small bacterial populations up to 14 DAI. The information from this study can be used to improve sanitation practices for ALS management in strawberry nurseries.


Asunto(s)
Fragaria , Xanthomonas , Fragaria/microbiología , Látex , Reacción en Cadena en Tiempo Real de la Polimerasa , Xanthomonas/genética
2.
Plant Dis ; 106(2): 711-719, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34579551

RESUMEN

Watermelon is an important cucurbit vegetable crop grown in most of the United States. Phytophthora fruit rot of watermelon caused by Phytophthora capsici has been a major factor, limiting production for the past 15 years in the southeastern United States. The U.S. Department of Agriculture, Agricultural Research Service released five Phytophthora fruit rot-resistant germplasm lines for use in breeding programs. These lines were developed by phenotyping using a local isolate of P. capsici from South Carolina. The present study was undertaken to determine if these resistant lines had broad resistance to diverse P. capsici isolates collected from different states and crops. Five resistant germplasm lines (USVL020-PFR, USVL203-PFR, USVL782-PFR, USVL489-PFR, and USVL531-MDR) and two susceptible cultivars, Sugar Baby and Mickey Lee, used as checks were grown in a field in 2014 and 2015 to produce fruit for evaluation. Mature fruit were harvested and placed in a walk-in growth chamber and inoculated with 20 different P. capsici isolates. The chamber was maintained at 26 ± 2°C and high relative humidity (>95%) using a humidifier. All five resistant germplasm lines were significantly more resistant than the two susceptible checks to all 20 P. capsici isolates. Among the five resistant germplasm lines, USVL020-PFR, USVL782-PFR, and USVL531-MDR had broad resistance. Some P. capsici isolates induced minor lesions and rot on USVL489-PFR compared with the other resistant lines. Variation in virulence and genetic diversity among the 20 P. capsici isolates was also observed. The five watermelon germplasm lines will be useful for developing commercial watermelon cultivars with broad resistance to P. capsici.


Asunto(s)
Citrullus , Phytophthora , Citrullus/genética , Resistencia a la Enfermedad/genética , Frutas , Phytophthora/genética , Fitomejoramiento , Enfermedades de las Plantas/genética , Estados Unidos
3.
Plant Dis ; 106(5): 1474-1485, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-34894749

RESUMEN

Bacterial spot is one of the most serious diseases of tomato. It is caused by four species of Xanthomonas: X. euvesicatoria, X. gardneri, X. perforans, and X. vesicatoria. Contaminated or infected seed can be a major source of inoculum for this disease. The use of certified pathogen-free seed is one of the primary management practices to reduce the inoculum load in commercial production. Current seed testing protocols rely mainly on plating the seed extract and conventional PCR; however, the plating method cannot detect viable but nonculturable cells, and the conventional PCR assay has limited capability to differentiate DNA extracted from viable or dead bacterial cells. To improve the sensitivity and specificity of the tomato seed testing method for bacterial spot pathogens, a long-amplicon quantitative PCR (qPCR) assay coupled with propidium monoazide (PMA-qPCR) was developed to quantify selectively the four pathogenic Xanthomonas species in tomato seed. The optimized PMA-qPCR procedure was evaluated on pure bacterial suspensions, bacteria-spiked seed extracts, and seed extracts of inoculated and naturally infected seed. A crude DNA extraction protocol also was developed, and PMA-qPCR with crude bacterial DNA extracts resulted in accurate quantification of 104 to 108 CFU/ml of viable bacteria when mixed with dead cells at concentrations as high as 107 CFU/ml in the seed extracts. With DNA purified from concentrated seed extracts, the PMA-qPCR assay was able to detect DNA of the target pathogens in seed samples spiked with ≥75 CFU/ml (about 0.5 CFU/seed) of the viable pathogens. Latent class analysis of the inoculated and naturally infected seed samples showed that the PMA-qPCR assay had greater sensitivity than plating the seed extracts on the semiselective modified Tween Medium B and CKTM media for all four target species. Being much faster and more sensitive than dilution plating, the PMA-qPCR assay has potential to be used as a standalone tool or in combination with the plating method to improve tomato seed testing and advance the production of clean seed.


Asunto(s)
Solanum lycopersicum , Xanthomonas , Solanum lycopersicum/microbiología , Extractos Vegetales , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Semillas , Xanthomonas/genética
4.
Microbiol Resour Announc ; 10(16)2021 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-33888499

RESUMEN

Xanthomonas fragariae is the causal agent of angular leaf spot of strawberry. Short-read sequences were generated for two X. fragariae strains with different virulence phenotypes on the Illumina HiSeq 2000 platform. These genome sequences will contribute to a better understanding of pathogen evolution and the genes contributing to virulence in X. fragariae.

5.
J Econ Entomol ; 114(2): 914-921, 2021 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-33580672

RESUMEN

The whitefly, Bemisia tabaci MEAM1 Gennadius causes serious losses to Florida vegetable and ornamental production. In 2019, a maximum dose bioassay was administered to 20 field populations of B. tabaci MEAM1 collected from various economic and weed hosts across south Florida to assess insecticide efficacy. The maximum dose bioassay tests the top labeled rate of the insecticide against B. tabaci adults on treated cotton leaves in a Petri dish over a 72-h period. A susceptible laboratory colony of B. tabaci MEAM1 and a colony of B. tabaci MED were also tested. Survival over 72 h was used to produce an area under the maximum dose curve, which was used to compare insecticide effects on different populations. Overall, imidacloprid demonstrated the poorest efficacy, dinotefuran and flupyradifurone were the most effective, and bifenthrin, cyantraniliprole, and thiamethoxam tended to group together, providing intermediate control. Across populations tested, survival in whitefly adults treated with dinotefuran was 50% lower than whiteflies treated with imidacloprid, about 33% lower than whiteflies treated with thiamethoxam, bifenthrin, and cyantraniliprole, and 10% lower than whiteflies treated with flupyradifurone. Efficacy of bifenthrin was less than imidacloprid on some populations, particularly from the Homestead area. Imidacloprid and thiamethoxam had no effect on mortality of the MED population when it was tested after 22 mo in culture without exposure to insecticides, although 7 mo later, these materials resulted in some mortality for the MED population.


Asunto(s)
Hemípteros , Insecticidas , Animales , Bioensayo , Florida , Resistencia a los Insecticidas , Insecticidas/farmacología
6.
Arch Virol ; 165(6): 1481-1484, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32246284

RESUMEN

Xanthomonas phage RiverRider is a novel N4-like bacteriophage and the first phage isolated from the plant pathogen Xanthomonas fragariae. Electron microscopy revealed a Podoviridae morphology consisting of isometric heads and short noncontractile tails. The complete genome of RiverRider is 76,355 bp in length, with 90 open reading frames and seven tRNAs. The genome is characteristic of N4-like bacteriophages in both content and organization, having predicted proteins characterized into the functional groups of transcription, DNA metabolism, DNA replication, lysis, lysis inhibition, structure and DNA packaging. Amino acid sequence comparisons for proteins in these categories showed highest similarities to well-characterized N4-like bacteriophages isolated from Achromobacter xylosoxidans and Erwinia amylovora. However, the tail fiber proteins of RiverRider are clearly distinct from those of other N4-like phages. RiverRider was able to infect seven different strains of X. fragariae and none of the other species of Xanthomonas tested.


Asunto(s)
Fragaria/microbiología , Genoma Viral , Podoviridae/clasificación , Xanthomonas/virología , Achromobacter denitrificans/virología , ADN Viral/genética , Erwinia amylovora/virología , Microscopía Electrónica , Sistemas de Lectura Abierta , Filogenia , Podoviridae/aislamiento & purificación , Podoviridae/ultraestructura , Análisis de Secuencia de ADN , Secuenciación Completa del Genoma
7.
Plant Dis ; 104(4): 1105-1112, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32040389

RESUMEN

Xanthomonas fragariae causes angular leaf spot in strawberry. The pathogen's association with its host tissue is thought to be a condition for its survival. Consequently, transmission of the pathogen to field production sites occurs almost exclusively through the movement of contaminated planting stock. The aim of this study was to develop a propidium monoazide (PMA)-quantitative PCR (qPCR) protocol for specific detection of viable X. fragariae cells. The qPCR procedure was developed for two different primer pairs: one producing a long amplicon (863 bp) and the other a short amplicon (61 bp). Both pairs were tested on mixtures of viable and heat-killed bacteria cells, bacteria-spiked strawberry petiole samples, and petioles collected from symptomatic, inoculated plants. The results showed that long-amplicon PMA-qPCR enabled specific and sensitive detection of X. fragariae with a detection limit of 103 CFU/ml, and it significantly improved PMA efficiency in differentiating viable from dead bacterial cells relative to short-amplicon PMA-qPCR. Based on the delta threshold cycle (Ct) values (i.e., the difference in Ct values between PMA-treated and nontreated samples), the long-amplicon PMA-qPCR was able to suppress the detection of dead X. fragariae cells 1.9- to 3.1-fold across all petiole samples tested. The quantification results from PMA-qPCR for mixtures of viable and dead cells were highly correlated with the predicted bacterial concentrations in a linear relationship (R2 = 0.981). This assay can be useful for identifying inoculum sources in the strawberry production cycle, which may lead to improved disease management strategies.


Asunto(s)
Fragaria , Xanthomonas , Azidas , Viabilidad Microbiana , Propidio/análogos & derivados
8.
Phytopathology ; 110(1): 130-145, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31573394

RESUMEN

Epidemics of tomato yellow leaf curl virus (TYLCV; species Tomato yellow leaf curl begomovirus) have been problematic to tomato production in the southeastern United States since the first detection of the virus in Florida in the late 1990s. Current strategies for management focus on farm-centric tactics that have had limited success for controlling either TYLCV or its whitefly vector. Areawide pest management (AWPM)-loosely defined as a coordinated effort to implement management strategies on a regional scale-may be a viable management alternative. A prerequisite for development of an AWPM program is an understanding of the spatial and temporal dynamics of the target pathogen and pest populations. The objective of this study was to characterize populations of whitefly and TYLCV in commercial tomato production fields in southwestern Florida and utilize this information to develop predictors of whitefly density and TYLCV disease incidence as a function of environmental and geographical factors. Scouting reports were submitted by cooperating growers located across approximately 20,000 acres in southwestern Florida from 2006 to 2012. Daily weather data were obtained from several local weather stations. Moran's I was used to assess spatial relationships and polynomial distributed lag regression was used to determine the relationship between weather variables, whitefly, and TYLCV. Analyses showed that the incidence of TYLCV increased proportionally with mean whitefly density as the season progressed. Nearest-neighbor analyses showed a strong linear relationship between the logarithms of whitefly densities in neighboring fields. A similar relationship was found with TYLCV incidences. Correlograms based on Moran's I showed that these relationships extended beyond neighboring fields and out to approximately 2.5 km for TYLCV and up to 5 km for whitefly, and that values of I were generally higher during the latter half of the production season for TYLCV. Weather was better at predicting whitefly density than at predicting TYLCV incidence. Whitefly density was best predicted by the number of days with an average temperature between 16 and 24°C (T16to24), relative humidity (RH) over the previous 31 days, and vapor pressure deficit over the last 8 days. TYLCV incidence was best predicted by T16to24, RH, and maximum wind speed over the previous 31 days. Results of this study helped to identify the extent to which populations of whitefly and TYLCV exist over the agricultural landscape of southwestern Florida, and the environmental conditions that favor epidemic growth. This information was used to propose an approach to AWPM for timing control measures for managing TYLCV epidemics.


Asunto(s)
Begomovirus , Hemípteros , Enfermedades de las Plantas , Solanum lycopersicum , Animales , Begomovirus/fisiología , Florida , Hemípteros/virología , Solanum lycopersicum/virología , Enfermedades de las Plantas/virología , Densidad de Población , Sudeste de Estados Unidos , Factores de Tiempo
9.
Phytopathology ; 109(1): 74-83, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30019996

RESUMEN

The hop powdery mildew fungus Podosphaera macularis persists from season to season in the Pacific Northwestern United States through infection of crown buds because only one of the mating types needed to produce the ascigerous stage is presently found in this region. Bud infection and successful overwintering of the fungus leads to the emergence of heavily infected shoots in early spring (termed flag shoots). Historical data of flag shoot occurrence and incidence in Oregon and Washington State during 2000 to 2017 were analyzed to identify their association with the incidence of powdery mildew, growers' use of fungicides, autumn and winter temperature, and other production factors. During this period, flag shoots were found on 0.05% of plants evaluated in Oregon and 0.57% in Washington. In Oregon, the incidence of powdery mildew on leaves was most severe and the number of fungicide applications made by growers greatest in yards where flag shoots were found in spring. Similarly, the incidence of plants with powdery mildew in Washington was significantly associated with the number of flag shoots present in early spring, although the number of fungicide applications made was independent of flag shoot occurrence. The occurrence of flag shoots was associated with prior occurrence of flag shoots in a yard, the incidence of foliar powdery mildew in the previous year, grower pruning method, and, in Washington, winter temperature. A census of hop yards in the eastern extent of the Oregon production region during 2014 to 2017 found flag shoots in 27 of 489 yards evaluated. In yards without flag shoots, 338 yards (73.2%) were chemically pruning or not pruned, whereas the remaining 124 (26.8%) were mechanically pruned. Of the 27 yards with flag shoots, 22 were either chemically pruned or not pruned and 4 were mechanically pruned in mid-April, well after the initial emergence of flag shoots. The prevalence of yards with flag shoots also was related to thoroughness of pruning in spring (8.1% of yards with incomplete pruning versus 1.9% of yards with thorough pruning). A Bayesian logistic regression model was fit to the data from the intensively assessed yards in Oregon, with binary risk factors for occurrence of a flag shoot in the previous year, occurrence of foliar mildew in the previous year, and thoroughness of pruning in spring. The model indicated that the median and 95% highest posterior density interval of the probability of flag shoot occurrence was 0.0008 (0.0000 to 0.0053) when a yard had no risk factors but risk increased to 0.0065 (0.0000 to 0.0283) to 0.43 (0.175 to 0.709) when one to all three of the risk factors were present. The entirety of this research indicates that P. macularis appears to persist in a subset of chronically affected hop yards, particularly yards where spring pruning is conducted poorly. Targeted management of the disease in a subset of fields most at risk for producing flag shoots could potentially influence powdery mildew development regionwide.


Asunto(s)
Ascomicetos/patogenicidad , Humulus/microbiología , Enfermedades de las Plantas/microbiología , Teorema de Bayes , Fungicidas Industriales/administración & dosificación , Oregon , Factores de Riesgo , Washingtón
10.
Phytopathology ; 108(6): 681-690, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29298111

RESUMEN

Xanthomonas fragariae causes angular leaf spot of strawberry, an important disease in strawberry growing regions worldwide. To better understand how X. fragariae multiplies and moves in strawberry plants, a green fluorescent protein (GFP)-labeled strain was constructed and used to monitor the pathogen's presence in leaf, petiole, and crown tissue with fluorescence microscopy following natural and wound inoculation in three strawberry cultivars. Taqman PCR was used to quantify bacterial densities in these same tissues regardless of the presence of GFP signal. Results showed X. fragariae colonized leaf mesophyll, the top 1 cm portion of the petiole adjacent to the leaf blade, and was occasionally found colonizing xylem vessels down to the middle of the petioles. The colonization of vascular bundles and the limited systemic movement that was observed appeared to be a passive process, of which the frequency increased with wounding and direct infiltration of bacteria into leaf veins. X. fragariae was able to directly enter petioles and colonize the space under the epidermis. Systemic movement of the bacteria into crown and other uninoculated tissues was not detected visually by GFP. However, X. fragariae was occasionally detected in these tissues by qPCR, but at quantities very near the qPCR detection limit. Petiole tissue harboring bacteria introduced either by direct entry through natural openings or wounds, or by systemic movement from infected foliar tissue, likely serves as a main source of initial inoculum in field plantings.


Asunto(s)
Fragaria/microbiología , Xanthomonas/fisiología , Proteínas Fluorescentes Verdes , Movimiento , Hojas de la Planta/microbiología , Xanthomonas/genética
11.
Plant Dis ; 102(2): 370-374, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30673515

RESUMEN

Watermelon is an important crop grown in 44 states in the United States. Phytophthora fruit rot caused by Phytophthora capsici is a serious disease in the southeastern U.S.A., where over 50% of the watermelons are produced. The disease has resulted in severe losses to watermelon growers, especially in Georgia, South Carolina, and North Carolina during the past few years. Several fruit rot-resistant watermelon germplasm lines have been developed for use in breeding programs. To evaluate the development of Phytophthora fruit rot on fruit of different ages, plants of fruit rot-resistant and susceptible lines were planted at weekly intervals for five consecutive weeks in experiments conducted over three years (2011 to 2013). Flowers were routinely inspected and hand pollinated to ensure having fruit of different ages. In each year, different aged fruit were harvested on the same day and inoculated with a 5-mm agar plug from an actively growing colony of P. capsici. Inoculated fruit were maintained in a room set to conditions conducive for disease development (>95% relative humidity, 26 ± 2°C). After 5 days, lesion diameter and intensity of sporulation was recorded for each fruit. Lesion diameter and sporulation intensity were significantly greater on fruit of susceptible lines compared with resistant lines. Fruit age did not have an effect on either measurement on susceptible (Sugar Baby) or resistant lines (PI 560020 and PI 595203). Our results showed that resistance to Phytophthora fruit rot in watermelon was not correlated with fruit age.


Asunto(s)
Citrullus/microbiología , Resistencia a la Enfermedad , Phytophthora/fisiología , Enfermedades de las Plantas/genética , Frutas/microbiología , Enfermedades de las Plantas/microbiología
12.
Phytopathology ; 107(10): 1243-1255, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28414632

RESUMEN

In California, angular leaf spot (ALS) is a common disease in strawberry nursery production, and a major concern for nurseries wishing to export plants. As the spatial pattern of a disease can offer insight into pathogen source, mode of dissemination, and how current crop management practices affect epidemic development, an understanding of the spatial pattern of ALS would allow nursery growers to make informed decisions regarding disease management. Ninety-seven field assessments of disease incidence were performed at different nursery locations in 2014 and 2015 to quantify ALS spatial pattern under commercial conditions. Both point-pattern and geostatistical statistical procedures were used to analyze the data. The spatial pattern of ALS was characterized by a high degree of heterogeneity, as indicated by high median values of the beta-binomial distribution's theta parameter (0.643), and the index of dispersion, D (4.218). The binary power law provided a robust description of the data with estimated slope and intercept parameters significantly greater than 1 and 0, respectively (P < 0.001). Spatial analysis by distance indices (SADIE) detected significant nonrandom spatial arrangements for 64% of the data sets. Analysis of directional disease spread showed a strong spatial association between sampling units along the same planting row. This suggests that recurrent crop operations during the growing season play a significant role in ALS spread and should be taken into account to improve disease control.


Asunto(s)
Fragaria/microbiología , Enfermedades de las Plantas/estadística & datos numéricos , Xanthomonas/fisiología , California , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Hojas de la Planta/microbiología , Análisis Espacial
13.
Plant Dis ; 101(1): 178-185, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30682294

RESUMEN

Squash vein yellowing virus (SqVYV) causes viral watermelon vine decline. To facilitate detection of SqVYV, enzyme linked-immunosorbent assay (ELISA) and quantitative reverse-transcription polymerase chain reaction (qRT-PCR) diagnostic methods were developed. Both methods were capable of detecting SqVYV in a wide range of cucurbit hosts. ELISA was able to detect virus in infected host tissue diluted to at least 1:2,560, which was sufficient for detection in symptomatic squash and watermelon plants. The qRT-PCR method was capable of reliably detecting as few as 3.4 copies of a cloned fragment of SqVYV genomic RNA with an average cycle threshold (Ct) value of 36.4. The sensitivities and specificities for each detection method were estimated by latent class analysis for a set of inoculated squash and watermelon plants at two sampling scales. The scales were hierarchical, with individual plants representing the upper scale and samples from the plant representing the lower scale. The number of samples per plant varied from 1 to 8, and a plant was diagnosed positive if any of its samples tested positive. For all analyses, a cutoff Ct of 35 was chosen for qRT-PCR, which is approximately 2.5 cycles lower than the lowest Ct value achieved for mock-inoculated plants (presumed to be a false positive). qRT-PCR showed high sensitivities (≥0.99) at both sampling scales for squash and watermelon, whereas the sensitivities for ELISA ranged from 0.58 to 0.76. The specificities for both tests were very similar (≥0.94), with ELISA sometimes outperforming qRT-PCR. These diagnostic methods provide additional tools for the identification of SqVYV and management of SqVYV-induced watermelon vine decline.

14.
PLoS One ; 11(1): e0147122, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26766068

RESUMEN

Xanthomonas fragariae is a bacterium that causes angular leaf spot of strawberry. Asymptomatic infection is common and contributes to the difficulties in disease management. The aim of this study was to develop a loop-mediated isothermal amplification (LAMP) assay as an efficient method for detection of asymptomatic infections of X. fragariae. In addition, a new method of sample preparation was developed that allows sampling of a larger amount of plant tissue, hence increasing the detection rate in real-life samples. The sample preparation procedure includes an overnight incubation of strawberry tissues in phosphate-buffered saline (PBS), followed by a quick sample concentration and a boiling step to extract DNA for amplification. The detection limit of the LAMP assay was approximately 2×10(3) CFU/mL for pure bacteria culture and 300 CFU/mL for bacteria spiked strawberry leaf and petiole samples. LAMP provided a 2-3 fold lower detection limit than the standard qPCR assay but was faster, and more user-friendly. The LAMP assay should serve as a rapid, sensitive and cost-effective tool for detecting asymptomatic infections of X. fragariae in strawberry nursery stock and contribute to improved disease management.


Asunto(s)
Fragaria/microbiología , Técnicas de Amplificación de Ácido Nucleico/métodos , Enfermedades de las Plantas/microbiología , Xanthomonas/genética , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Sensibilidad y Especificidad
15.
Plant Dis ; 100(6): 1046-1053, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30682282

RESUMEN

Genomic and biological characterization of Tomato necrotic streak virus (TomNSV), a recently described ilarvirus infecting tomato in Florida, was completed. The full genome sequence revealed that TomNSV is a novel subgroup 2 ilarvirus that is distinct from other previously reported tomato-infecting ilarviruses: Tobacco streak virus, Parietaria mottle virus, and Tomato necrotic spot virus included in subgroup 1. In a host range experiment, TomNSV infected members of the Solanaceae and Chenopodiaceae plant families but did not infect sunflower (Helianthus annuus L.) or green bean (Phaseolus vulgaris L.). In tomato plants, the virus moved downward to the roots from the initial point of infection and then upward from the roots to tissues of active growth such as fruit, flowers, and young leaves where symptoms were produced. Thus, young leaves, fruit, and flowers are ideal for sampling for TomNSV. The transmission rate by seed collected from infected tomato plants was determined to be 0.33%. Collectively, the results of these experiments indicated that TomNSV is the causal agent of the necrotic streak disease of tomato observed in Florida since 2013.

16.
Phytopathology ; 105(3): 388-98, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25317844

RESUMEN

Groundnut ringspot virus (GRSV) and Tomato chlorotic spot virus (TCSV) are two emerging tospoviruses in Florida. In a survey of the southeastern United States, GRSV and TCSV were frequently detected in solanaceous crops and weeds with tospovirus-like symptoms in south Florida, and occurred sympatrically with Tomato spotted wilt virus (TSWV) in tomato and pepper in south Florida. TSWV was the only tospovirus detected in other survey locations, with the exceptions of GRSV from tomato (Solanum lycopersicum) in South Carolina and New York, both of which are first reports. Impatiens (Impatiens walleriana) and lettuce (Lactuca sativa) were the only non-solanaceous GRSV and/or TCSV hosts identified in experimental host range studies. Little genetic diversity was observed in GRSV and TCSV sequences, likely due to the recent introductions of both viruses. All GRSV isolates characterized were reassortants with the TCSV M RNA. In laboratory transmission studies, Frankliniella schultzei was a more efficient vector of GRSV than F. occidentalis. TCSV was acquired more efficiently than GRSV by F. occidentalis but upon acquisition, transmission frequencies were similar. Further spread of GRSV and TCSV in the United States is possible and detection of mixed infections highlights the opportunity for additional reassortment of tospovirus genomic RNAs.


Asunto(s)
Enfermedades de las Plantas/virología , Tospovirus/aislamiento & purificación , Verduras/virología , Animales , Florida , Thysanoptera/virología , Tospovirus/genética
17.
Plant Dis ; 98(12): 1671-1680, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30703883

RESUMEN

Squash vein yellowing virus (SqVYV) is a whitefly-transmitted ipomovirus infecting watermelon and other cucurbits that was recently introduced to Florida. Effects on watermelon are devastating, with total vine collapse, often near harvest, and fruit rendered unmarketable by brown, discolored flesh. The epidemiology of SqVYV was studied in a 1-ha field of 'Fiesta' watermelon over six growing seasons (I to VI) to characterize the spatial patterning of disease and temporal rate of disease progress, as well as its association with Cucurbit leaf crumple virus (CuLCrV) and Cucurbit yellow stunting disorder virus (CYSDV), two additional whitefly-transmitted viruses that often occur with SqVYV. The field was scouted at regular intervals for the length of the season for incidence of virus and number of whiteflies. Incidence of SqVYV reached 100% during seasons I, II, and V and 20% during season III. SqVYV did not occur during seasons IV and VI. SqVYV progressed in a characteristic logistic fashion in seasons I, II, and V but less so in season III. The rate of disease progress was similar for the three seasons with high disease incidence, with an average value of 0.18. A positive correlation between the area under the disease progress curve and whitefly-days was found, where both progress curves were calculated as a function of thermal time (degree days, base 0°C). SqVYV displayed significant but variable levels of aggregation, as indicated by its fit to the ß-binomial distribution, the binary power law, and ordinary runs analysis. Association analysis indicated that the viruses were largely transmitted independently. Results of this study provide epidemiological information that will be useful in the development of management strategies for SqVYV-induced vine decline, and provide new information for CuLCrV and CYSDV.

18.
Phytopathology ; 103(12): 1243-51, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23883156

RESUMEN

Squash vein yellowing virus (SqVYV) is the causal agent of viral watermelon vine decline, one of the most serious diseases in watermelon (Citrullus lanatus L.) production in the southeastern United States. At present, there is not a gold standard diagnostic test for determining the true status of SqVYV infection in plants. Current diagnostic methods for identification of SqVYV-infected plants or tissues are based on the reverse-transcription polymerase chain reaction (RT-PCR), tissue blot nucleic acid hybridization assays (TB), and expression of visual symptoms. A quantitative assessment of the performance of these diagnostic tests is lacking, which may lead to an incorrect interpretation of results. In this study, latent class analysis (LCA) was used to estimate the sensitivities and specificities of RT-PCR, TB, and visual assessment of symptoms as diagnostic tests for SqVYV. The LCA model assumes that the observed diagnostic test responses are linked to an underlying latent (nonobserved) disease status of the population, and can be used to estimate sensitivity and specificity of the individual tests, as well as to derive an estimate of the incidence of disease when a gold standard test does not exist. LCA can also be expanded to evaluate the effect of factors and was done here to determine whether diagnostic test performances varied among the type of plant tissue being tested (crown versus vine tissue), where plant samples were taken relative to the position of the crown (i.e., distance from the crown), host (i.e., genus), and habitat (field-grown versus greenhouse-grown plants). Results showed that RT-PCR had the highest sensitivity (0.94) and specificity (0.98) of the three tests. TB had better sensitivity than symptoms for detection of SqVYV infection (0.70 versus 0.32), while the visual assessment of symptoms was more specific than TB and, thus, a better indicator of noninfection (0.98 versus 0.65). With respect to the grouping variables, RT-PCR and TB had better sensitivity but poorer specificity for diagnosing SqVYV infection in crown tissue than it did in vine tissue, whereas symptoms had very poor sensitivity but excellent specificity in both tissues for all cucurbits analyzed in this study. Test performance also varied with habitat and genus but not with distance from the crown. The results given here provide quantitative measurements of test performance for a range of conditions and provide the information needed to interpret test results when tests are used in parallel or serial combination for a diagnosis.


Asunto(s)
Citrullus/virología , Cucurbita/virología , Enfermedades de las Plantas/estadística & datos numéricos , Potyviridae/aislamiento & purificación , Florida , Modelos Estadísticos , Hibridación de Ácido Nucleico , Fenotipo , Enfermedades de las Plantas/virología , Potyviridae/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Sensibilidad y Especificidad
19.
Annu Rev Phytopathol ; 51: 453-72, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23725469

RESUMEN

Scale is an important but somewhat neglected subject in plant pathology. Scale serves as an abstract concept, providing a framework for organizing observations and theoretical models, and plays a functional role in the organization of ecological communities and physical processes. Rich methodological resources are available to plant pathologists interested in considering either or both aspects of scale in their research. We summarize important concepts in both areas of the literature, particularly as they apply to the spatial pattern of plant disease, and highlight some new results that emphasize the importance of scaling on the emergence of different types of probability distribution in empirical observation. We also highlight the important links between heterogeneity and scale, which are of central importance in plant disease epidemiology and the analysis of spatial pattern. We consider statistical approaches that are available, where actual physical scale is known, and for more conceptual research on hierarchies, where scale plays a more abstract role, particularly for field-based research. For the latter, we highlight methods that plant pathologists could consider to account for the effect of scale in the design of field studies.


Asunto(s)
Modelos Teóricos , Enfermedades de las Plantas/estadística & datos numéricos , Patología de Plantas , Geografía , Análisis Espacial
20.
Plant Dis ; 97(9): 1149-1157, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30722417

RESUMEN

The responses of a diverse group of vining cucurbits to inoculation with Squash vein yellowing virus (SqVYV) were determined. For the first time, Cucurbita maxima, Cucumis dipsaceus, and Cucumis metuliferus were observed to develop necrosis and plant death similar to the SqVYV-induced vine decline in watermelon (Citrullus lanatus var. lanatus). The majority of cucurbits inoculated, however, either exhibited no symptoms of infection, or developed relatively mild symptoms such as vein yellowing of upper, noninoculated leaves. All inoculated plants were sectioned and tested for the presence of SqVYV. The virus was widely distributed in mature, fruit-bearing cucurbits with over 72% of plant sections testing positive for SqVYV by tissue-blot and/or reverse transcription-polymerase chain reaction. Plants of several cucurbits, including a wild citron (Citrullus lanatus var. citroides), were symptomless and had a decreased frequency of virus infection of vine segments compared to susceptible vining cucurbits, indicating a higher level of resistance. However, no significant relationship between the frequency of infection or virus distribution within plants and the symptom response was observed. These results demonstrate that a diverse group of cucurbits may decline when infected with SqVYV, and suggest that widespread distribution of virus within the plant is not the sole cause of decline.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA