Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Alzheimers Dis ; 72(3): 885-899, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31640098

RESUMEN

Despite numerous efforts and studies over the last three decades, Alzheimer's disease (AD) remains a disorder not fully understood and incurable so far. Development of induced pluripotent stem cell (iPSC) technology to obtain terminally differentiated neurons from adult somatic cells revolutionized the study of AD, providing a powerful tool for modelling the disease and for screening candidate drugs. Indeed, iPSC reprogramming allowed generation of neurons from both sporadic and familial AD patients with the promise to recapitulate the early pathological mechanisms in vitro and to identify novel targets. Interestingly, NPS 2143, a negative allosteric modulator of the calcium sensing receptor, has been indicated as a possible therapeutic for AD. In the present study, we assessed the potential of our iPSC-based familial AD cellular model as a platform for drug testing. We found that iPSC-derived neurons respond to treatment with γ-secretase inhibitor, modifying the physiological amyloid-ß protein precursor (AßPP) processing and amyloid-ß (Aß) secretion. Moreover, we demonstrated the expression of calcium sensing receptor (CaSR) protein in human neurons derived from healthy and familial AD subjects. Finally, we showed that calcilytic NPS 2143 induced a changing of Aß and sAßPPα secreted into conditioned media and modulation of CaSR and PSEN1 expression at the plasma membrane of AD neurons. Overall, our findings suggest that NPS 2143 affects important AD processes in a relevant in vitro system of familial AD.


Asunto(s)
Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Naftalenos/farmacología , Neuronas/metabolismo , Fragmentos de Péptidos/metabolismo , Presenilina-1/metabolismo , Péptidos beta-Amiloides/antagonistas & inhibidores , Humanos , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Mutación/efectos de los fármacos , Mutación/fisiología , Neuronas/efectos de los fármacos , Fragmentos de Péptidos/antagonistas & inhibidores , Presenilina-1/genética
2.
Aging (Albany NY) ; 11(8): 2512-2540, 2019 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-31026227

RESUMEN

The biosynthesis of ribosomes is a complex process that requires the coordinated action of many factors and a huge energy investment from the cell. Ribosomes are essential for protein production, and thus for cellular survival, growth and proliferation. Ribosome biogenesis is initiated in the nucleolus and includes: the synthesis and processing of ribosomal RNAs, assembly of ribosomal proteins, transport to the cytoplasm and association of ribosomal subunits. The disruption of ribosome biogenesis at various steps, with either increased or decreased expression of different ribosomal components, can promote cell cycle arrest, senescence or apoptosis. Additionally, interference with ribosomal biogenesis is often associated with cancer, aging and age-related degenerative diseases. Here, we review current knowledge on impaired ribosome biogenesis, discuss the main factors involved in stress responses under such circumstances and focus on examples with clinical relevance.


Asunto(s)
Envejecimiento/metabolismo , Neoplasias/metabolismo , Ribosomas/metabolismo , Animales , Humanos , Biogénesis de Organelos , Proteínas Ribosómicas/metabolismo
3.
Cell Cycle ; 17(1): 92-101, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29143558

RESUMEN

Ribosome biogenesis is an energy consuming process which takes place mainly in the nucleolus. By producing ribosomes to fuel protein synthesis, it is tightly connected with cell growth and cell cycle control. Perturbation of ribosome biogenesis leads to the activation of p53 tumor suppressor protein promoting processes like cell cycle arrest, apoptosis or senescence. This ribosome biogenesis stress pathway activates p53 through sequestration of MDM2 by a subset of ribosomal proteins (RPs), thereby stabilizing p53. Here, we identify human HEATR1, as a nucleolar protein which positively regulates ribosomal RNA (rRNA) synthesis. Downregulation of HEATR1 resulted in cell cycle arrest in a manner dependent on p53. Moreover, depletion of HEATR1 also caused disruption of nucleolar structure and activated the ribosomal biogenesis stress pathway - RPL5 / RPL11 dependent stabilization and activation of p53. These findings reveal an important role for HEATR1 in ribosome biogenesis and further support the concept that perturbation of ribosome biosynthesis results in p53-dependent cell cycle checkpoint activation, with implications for human pathologies including cancer.


Asunto(s)
Antígenos de Histocompatibilidad Menor/metabolismo , Biogénesis de Organelos , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , ARN Polimerasa I/genética , Proteínas de Unión al ARN/metabolismo , Proteínas Ribosómicas/metabolismo , Ribosomas/metabolismo , Transcripción Genética , Proteína p53 Supresora de Tumor/metabolismo , Puntos de Control del Ciclo Celular , Línea Celular Tumoral , Proliferación Celular , Humanos , Proteínas Nucleares/metabolismo , ARN Ribosómico/biosíntesis , Transducción de Señal , Estrés Fisiológico
4.
Nature ; 552(7684): 194-199, 2017 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-29211715

RESUMEN

Cancer incidence is rising and this global challenge is further exacerbated by tumour resistance to available medicines. A promising approach to meet the need for improved cancer treatment is drug repurposing. Here we highlight the potential for repurposing disulfiram (also known by the trade name Antabuse), an old alcohol-aversion drug that has been shown to be effective against diverse cancer types in preclinical studies. Our nationwide epidemiological study reveals that patients who continuously used disulfiram have a lower risk of death from cancer compared to those who stopped using the drug at their diagnosis. Moreover, we identify the ditiocarb-copper complex as the metabolite of disulfiram that is responsible for its anti-cancer effects, and provide methods to detect preferential accumulation of the complex in tumours and candidate biomarkers to analyse its effect on cells and tissues. Finally, our functional and biophysical analyses reveal the molecular target of disulfiram's tumour-suppressing effects as NPL4, an adaptor of p97 (also known as VCP) segregase, which is essential for the turnover of proteins involved in multiple regulatory and stress-response pathways in cells.


Asunto(s)
Disuasivos de Alcohol , Alcoholismo/tratamiento farmacológico , Antineoplásicos , Disulfiram/farmacología , Disulfiram/uso terapéutico , Reposicionamiento de Medicamentos , Neoplasias/tratamiento farmacológico , Proteínas Nucleares/metabolismo , Adulto , Disuasivos de Alcohol/farmacología , Disuasivos de Alcohol/uso terapéutico , Alcoholismo/epidemiología , Animales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Cobre/química , Dinamarca/epidemiología , Disulfiram/química , Femenino , Respuesta al Choque Térmico/efectos de los fármacos , Humanos , Masculino , Ratones , Persona de Mediana Edad , Terapia Molecular Dirigida , Neoplasias/metabolismo , Neoplasias/mortalidad , Neoplasias/patología , Proteínas Nucleares/química , Agregado de Proteínas , Unión Proteica/efectos de los fármacos , Proteolisis/efectos de los fármacos
5.
Biomolecules ; 7(1)2017 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-28230817

RESUMEN

DNA replication is a highly demanding process regarding the energy and material supply and must be precisely regulated, involving multiple cellular feedbacks. The slowing down or stalling of DNA synthesis and/or replication forks is referred to as replication stress (RS). Owing to the complexity and requirements of replication, a plethora of factors may interfere and challenge the genome stability, cell survival or affect the whole organism. This review outlines chemical compounds that are known inducers of RS and commonly used in laboratory research. These compounds act on replication by direct interaction with DNA causing DNA crosslinks and bulky lesions (cisplatin), chemical interference with the metabolism of deoxyribonucleotide triphosphates (hydroxyurea), direct inhibition of the activity of replicative DNA polymerases (aphidicolin) and interference with enzymes dealing with topological DNA stress (camptothecin, etoposide). As a variety of mechanisms can induce RS, the responses of mammalian cells also vary. Here, we review the activity and mechanism of action of these compounds based on recent knowledge, accompanied by examples of induced phenotypes, cellular readouts and commonly used doses.


Asunto(s)
Células/metabolismo , Replicación del ADN , Estrés Fisiológico , Animales , Antineoplásicos/química , Antineoplásicos/farmacología , Células/efectos de los fármacos , Replicación del ADN/efectos de los fármacos , Humanos , Estrés Fisiológico/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...