Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
JCO Clin Cancer Inform ; 8: e2300219, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38759125

RESUMEN

PURPOSE: Dynamic operations platforms allow for cross-platform data extraction, integration, and analysis, although application of these platforms to large-scale oncology enterprises has not been described. This study presents a pipeline for automated, high-fidelity extraction, integration, and validation of cross-platform oncology data in patients undergoing treatment for rectal cancer at a single, high-volume institution. METHODS: A dynamic operations platform was used to identify patients with rectal cancer treated at MD Anderson Cancer Center between 2016 and 2022 who had magnetic resonance imaging (MRI) imaging and preoperative treatment details available in the electronic health record (EHR). Demographic, clinicopathologic, tumor mutation, radiographic, and treatment data were extracted from the EHR using a methodology adaptable to any disease site. Data accuracy was assessed by manual review. Accuracy before and after implementation of synoptic reporting was determined for MRI data. RESULTS: A total of 516 patients with localized rectal cancer were included. In the era after institutional adoption of synoptic reports, the dynamic operations platform extracted T (tumor) category data from the EHR with 95% accuracy compared with 87% before the use of synoptic reports, and N (lymph node) category with 88% compared with 58%. Correct extraction of pelvic sidewall adenopathy was 94% compared with 78%, and extramural vascular invasion accuracy was 99% compared with 89%. Neoadjuvant chemotherapy and radiation data were 99% accurate for patients who had synoptic data sources. CONCLUSION: Using dynamic operations platforms enables automated cross-platform integration of multiparameter oncology data with high fidelity in patients undergoing multimodality treatment for rectal cancer. These pipelines can be adapted to other solid tumors and, together with standardized reporting, can increase efficiency in clinical research and the translation of actionable findings toward optimizing patient outcomes.


Asunto(s)
Bases de Datos Factuales , Imagen por Resonancia Magnética , Neoplasias del Recto , Humanos , Neoplasias del Recto/terapia , Neoplasias del Recto/patología , Neoplasias del Recto/diagnóstico por imagen , Neoplasias del Recto/diagnóstico , Femenino , Masculino , Persona de Mediana Edad , Imagen por Resonancia Magnética/métodos , Anciano , Registros Electrónicos de Salud , Adulto , Reproducibilidad de los Resultados , Estadificación de Neoplasias
2.
JCO Clin Cancer Inform ; 7: e2200123, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-37001039

RESUMEN

PURPOSE: Clinical management of patients receiving immune checkpoint inhibitors (ICIs) could be informed using accurate predictive tools to identify patients at risk of short-term acute care utilization (ACU). We used routinely collected data to develop and assess machine learning (ML) algorithms to predict unplanned ACU within 90 days of ICI treatment initiation. METHODS: We used aggregated electronic health record data from 7,960 patients receiving ICI treatments to train and assess eight ML algorithms. We developed the models using pre-SARS-COV-19 COVID-19 data generated between January 2016 and February 2020. We validated our algorithms using data collected between March 2020 and June 2022 (peri-COVID-19 sample). We assessed performance using area under the receiver operating characteristic curves (AUROC), sensitivity, specificity, and calibration plots. We derived intuitive explanations of predictions using variable importance and Shapley additive explanation analyses. We assessed the marginal performance of ML models compared with that of univariate and multivariate logistic regression (LR) models. RESULTS: Most algorithms significantly outperformed the univariate and multivariate LR models. The extreme gradient boosting trees (XGBT) algorithm demonstrated the best overall performance (AUROC, 0.70; sensitivity, 0.53; specificity, 0.74) on the peri-COVID-19 sample. The algorithm performance was stable across both pre- and peri-COVID-19 samples, as well as ICI regimen and cancer groups. Type of ICI agents, oxygen saturation, diastolic blood pressure, albumin level, platelet count, immature granulocytes, absolute monocyte, chloride level, red cell distribution width, and alcohol intake were the top 10 key predictors used by the XGBT algorithm. CONCLUSION: Machine learning algorithms trained using routinely collected data outperformed traditional statistical models when predicting 90-day ACU. The XGBT algorithm has the potential to identify high-ACU risk patients and enable preventive interventions to avoid ACU.


Asunto(s)
COVID-19 , Neoplasias , Humanos , COVID-19/epidemiología , Inmunoterapia , Algoritmos , Área Bajo la Curva , Aprendizaje Automático , Neoplasias/diagnóstico , Neoplasias/terapia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...