Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Heliyon ; 9(11): e22103, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38045219

RESUMEN

Cockroaches are very capable of mechanically transmitting harmful microorganisms, which is seen to be a severe hazard to the general public's health. The purpose of this study was the evaluation of cockroach bacterial contamination in various locations throughout Babylon. 300 cockroaches were caught from different wards of the hospital, restaurants, and houses. Using PBS buffer, the external surface of the cockroaches was washed to collect bacteria. Standard phenotypic methods were used to identify and classify bacteria. Afterward, the bacterial resistance to different antibiotics was investigated using the Kirby-Bauer disk diffusion susceptibility test. The 200 (66.6 %) American cockroaches including 56 (18.7 %) Blattella germanica and 44 (14.6 %) Blatta orientalis were identified. Noteworthy, 96.6 % of cockroaches were infected with different bacteria. Bacillus strains, coagulase-negative Staphylococci (CoNs), and Escherichia coli were the most frequent among the isolated bacteria. On average, the highest antibiotic resistance was detected to cefotaxime, ampicillin, cephalothin, and kanamycin. On the other hand, the isolated bacteria showed high sensitivity to gentamicin, nitrofurantoin, tetracycline, trimethoprim/sulfamethoxazole (SXT), and chloramphenicol. high antibiotic resistance in bacteria isolated from different wards of the hospital and the high potential of transmission of these bacteria by cockroaches is a serious warning for the health of society.

2.
Curr Med Chem ; 2023 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-37921180

RESUMEN

INTRODUCTION: Although radiotherapy is one of the main cancer treatment modalities, exposing healthy organs/tissues to ionizing radiation during treatment and tumor resistance to ionizing radiation are the chief challenges of radiotherapy that can lead to different adverse effects. It was shown that the combined treatment of radiotherapy and natural bioactive compounds (such as silymarin/silibinin) can alleviate the ionizing radiation-induced adverse side effects and induce synergies between these therapeutic modalities. In the present review, the potential radiosensitization effects of silymarin/silibinin during cancer radiation exposure/radiotherapy were studied. METHODS: According to the PRISMA guideline, a systematic search was performed for the identification of relevant studies in different electronic databases of Google Scholar, PubMed, Web of Science, and Scopus up to October 2022. We screened 843 articles in accordance with a predefined set of inclusion and exclusion criteria. Seven studies were finally included in this systematic review. RESULTS: Compared to the control group, the cell survival/proliferation of cancer cells treated with ionizing radiation was considerably less, and silymarin/silibinin administration synergistically increased ionizing radiation-induced cytotoxicity. Furthermore, there was a decrease in the tumor volume, weight, and growth of ionizing radiation-treated mice as compared to the untreated groups, and these diminutions were predominant in those treated with radiotherapy plus silymarin/ silibinin. Furthermore, the irradiation led to a set of biochemical and histopathological changes in tumoral cells/tissues, and the ionizing radiation-induced alterations were synergized following silymarin/silibinin administration (in most cases). CONCLUSION: In most cases, silymarin/silibinin administration could sensitize the cancer cells to ionizing radiation through an increase of free radical formation, induction of DNA damage, increase of apoptosis, inhibition of angiogenesis and metastasis, etc. However, suggesting the use of silymarin/silibinin during radiotherapeutic treatment of cancer patients requires further clinical studies.

3.
Mol Biol Rep ; 50(12): 10579-10588, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37932498

RESUMEN

The skeleton is a living organ that undergoes constant changes, including bone formation and resorption. It is affected by various diseases, such as osteoporosis, osteopenia, and osteomalacia. Nowadays, several methods are applied to protect bone health, including the use of hormonal and non-hormonal medications and supplements. However, certain drugs like glucocorticoids, thiazolidinediones, heparin, anticonvulsants, chemotherapy, and proton pump inhibitors can endanger bone health and cause bone loss. New studies are exploring the use of supplements, such as conjugated linoleic acid (CLA) and glucosamine, with fewer side effects during treatment. Various mechanisms have been proposed for the effects of CLA and glucosamine on bone structure, both direct and indirect. One mechanism that deserves special attention is the regulatory effect of RANKL/RANK/OPG on bone turnover. The RANKL/RANK/OPG pathway is considered a motive for osteoclast maturation and bone resorption. The cytokine system, consisting of the receptor activator of the nuclear factor (NF)-kB ligand (RANKL), its receptor RANK, and its decoy receptor, osteoprotegerin (OPG), plays a vital role in bone turnover. Over the past few years, researchers have observed the impact of CLA and glucosamine on the RANKL/RANK/OPG mechanism of bone turnover. However, no comprehensive study has been published on these supplements and their mechanism. To address this gap in knowledge, we have critically reviewed their potential effects. This review aims to assist in developing efficient treatment strategies and focusing future studies on these supplements.


Asunto(s)
Enfermedades Óseas Metabólicas , Ácidos Linoleicos Conjugados , Humanos , Osteoprotegerina/metabolismo , Glucosamina , Enfermedades Óseas Metabólicas/metabolismo , Ligando RANK/metabolismo , Osteoclastos/metabolismo
4.
Heliyon ; 9(9): e19826, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37809394

RESUMEN

In the recent years, micronutrients play an important role in improving body health with preventing and treating of chronic diseases. Chromium is one of the vital minerals involved in the regulation of insulin action. According to abundant evidences this mineral seems to be an essential factor involved in the reduction of insulin resistance and decreasing the risk of type 2 diabetes mellitus (T2DM) and cardiovascular diseases (CVDs). Moreover, it has been proposed that Chromium supplementation affects mechanisms involved in blood pressure, lipid metabolism, inflammation, and oxidative stress. For instance, it may affect blood pressure through alteration of the renin-angiotensin system, as well as reducing the angiotensin-converting enzyme activity. Furthermore, Chromium supplementation might help reduce the coronary heart disease rates. This study aims to provide a comprehensive review regarding to the effects of Chromium supplementation on CVDs risk factors with an emphasis on possible molecular mechanisms.

5.
Rev Environ Health ; 2023 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-37775307

RESUMEN

Polycyclic aromatic hydrocarbon (PAHs) are part of particulate matter (PM), which is produced from incomplete combustion of organic matter. Biomarkers mean biological indicators, molecules that indicate a normal or abnormal process in the body and may be a sign of a condition or disease. Studies show that PAHs increase the risk of cardiovascular diseases through processes such as oxidative stress, inflammation and atherosclerosis. The present study focused on the evaluation of health effects PAHs biomarkers on cardiovascular diseases (CVD). In this narrative study, data were collected from databases such as Scopus, PubMed, Web of science and Google Scholar in the period 1975-2023. After screening, duplicate and irrelevant articles were removed. Finally, 68 articles related to the effect of PAHs on CVD were included in the study. In addition to the articles found through the search in databases, another 18 articles from the references of the selected articles were included. According to the finding in during the biotransformation of PAH, a number of metabolites are made, such as phenols, diols, quinones, and epoxides. Phenolic isomers have the highest percentage and biomarkers used for their detection include 2-OHNAP used to trace naphthalene from heating processed food, 3-OHPHEN used to trace phenanthrene from diesel, 2-OHFLU used to trace fluorene and 1-OHPYR used to trace pyrene from cigarette and hookah smoke. According to the result, increasing blood pressure and heart rate and causing atherosclerosis are the main complications due to exposure to PAH metabolite on cardiovascular system. The most important agents that causes this affects including increased homocysteine, cholesterol, high-density lipoprotein (HDL), low-density lipoprotein (LDL), serum biomarkers of C-reactive protein, and triglycerides. Result this study showed that cardiovascular diseases risk is increased by exposure to PAH biomarkers from smoking, car emissions, occupational exposure, and incinerators. Therefore, strict controls should be implemented for sources of PAH production and exposure.

6.
Int Immunopharmacol ; 123: 110713, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37523968

RESUMEN

microRNA-122 (miR-122) is a highly conserved microRNA that is predominantly expressed in the liver and plays a critical role in the regulation of liver metabolism. Recent studies have shown that miR-122 is involved in the pathogenesis of various types of cancer, particularly liver cancer. In this sense, The current findings highlighted the potential role of miR-122 in regulating many vital processes in cancer pathophysiology, including apoptosis, signaling pathway, cell metabolism, immune system response, migration, and invasion. These results imply that miR-122, which has been extensively studied for its biological functions and potential therapeutic applications, acts as a tumor suppressor or oncogene in cancer development. We first provide an overview and summary of the physiological function and mode of action of miR-122 in liver cancer. We will examine the various signaling pathways and molecular mechanisms through which miR-122 exerts its effects on cancer cells, including the regulation of oncogenic and tumor suppressor genes, the modulation of cell proliferation and apoptosis, and the regulation of metastasis. Most importantly, we will also discuss the potential diagnostic and therapeutic applications of miR-122 in cancer, including the development of miRNA-based biomarkers for cancer diagnosis and prognosis, and the potential use of miR-122 as a therapeutic target for cancer treatment.


Asunto(s)
Neoplasias Hepáticas , MicroARNs , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Neoplasias Hepáticas/metabolismo , Genes Supresores de Tumor , Oncogenes , Regulación Neoplásica de la Expresión Génica , Proliferación Celular/genética , Línea Celular Tumoral , Movimiento Celular/genética
7.
Int Immunopharmacol ; 119: 110214, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37126985

RESUMEN

There are several interactions within the tumor microenvironment (TME) that affect the response of cancer cells to therapy. There are also a large number of cells and secretions in TME that increase resistance to therapy. Following the release of immunosuppressive, pro-angiogenic, and metastatic molecules by certain cells such as tumor-associated macrophages (TAMs), cancer-associated fibroblasts (CAFs), and cancer cells, immune evasion, angiogenesis, and metastasis may be induced. However, natural killer (NK) cells and cytotoxic CD8 + T lymphocytes (CTLs) can responsively release anticancer molecules. In addition, anticancer drugs can modulate these cells and their interactions in favor of either cancer resistance or therapy. Docetaxel belongs to taxanes, a class of anti-tumor drugs, which acts through the polymerization of tubulin and the induction of cell cycle arrest. Also, it has been revealed that taxanes including docetaxel affect cancer cells and the other cells within TME through some other mechanisms such as modulation of immune system responses, angiogenesis, and metastasis. In this paper, we explain the basic mechanisms of docetaxel interactions with malignant cells. Besides, we review the diverse effects of docetaxel on TME and cancer cells in consequence. Lastly, the modulatory effects of docetaxel alone or in conjunction with other anticancer agents on anti-tumor immunity, cancer cell resistance, angiogenesis, and metastasis will be discussed.


Asunto(s)
Antineoplásicos , Neoplasias , Humanos , Docetaxel/farmacología , Docetaxel/uso terapéutico , Microambiente Tumoral , Neoplasias/terapia , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Linfocitos T Citotóxicos
8.
Front Oncol ; 13: 1173827, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37205191

RESUMEN

Cancer is caused by defects in coding and non-coding RNAs. In addition, duplicated biological pathways diminish the efficacy of mono target cancer drugs. MicroRNAs (miRNAs) are short, endogenous, non-coding RNAs that regulate many target genes and play a crucial role in physiological processes such as cell division, differentiation, cell cycle, proliferation, and apoptosis, which are frequently disrupted in diseases such as cancer. MiR-766, one of the most adaptable and highly conserved microRNAs, is notably overexpressed in several diseases, including malignant tumors. Variations in miR-766 expression are linked to various pathological and physiological processes. Additionally, miR-766 promotes therapeutic resistance pathways in various types of tumors. Here, we present and discuss evidence implicating miR-766 in the development of cancer and treatment resistance. In addition, we discuss the potential applications of miR-766 as a therapeutic cancer target, diagnostic biomarker, and prognostic indicator. This may shed light on the development of novel therapeutic strategies for cancer therapy.

9.
Cancer Cell Int ; 23(1): 88, 2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-37165384

RESUMEN

PURPOSE: Although doxorubicin chemotherapy is commonly applied for treating different malignant tumors, cardiotoxicity induced by this chemotherapeutic agent restricts its clinical use. The use of silymarin/silibinin may mitigate the doxorubicin-induced cardiac adverse effects. For this aim, the potential cardioprotective effects of silymarin/silibinin against the doxorubicin-induced cardiotoxicity were systematically reviewed. METHODS: In this study, we performed a systematic search in accordance with PRISMA guideline for identifying all relevant studies on "the role of silymarin/silibinin against doxorubicin-induced cardiotoxicity" in different electronic databases up to June 2022. Sixty-one articles were obtained and screened based on the predefined inclusion and exclusion criteria. Thirteen eligible papers were finally included in this review. RESULTS: According to the echocardiographic and electrocardiographic findings, the doxorubicin-treated groups presented a significant reduction in ejection fraction, tissue Doppler peak mitral annulus systolic velocity, and fractional shortening as well as bradycardia, prolongation of QT and QRS interval. However, these echocardiographic abnormalities were obviously improved in the silymarin plus doxorubicin groups. As well, the doxorubicin administration led to induce histopathological and biochemical changes in the cardiac cells/tissue; in contrast, the silymarin/silibinin co-administration could mitigate these induced alterations (for most of the cases). CONCLUSION: According to the findings, it was found that the co-administration of silymarin/silibinin alleviates the doxorubicin-induced cardiac adverse effects. Silymarin/silibinin exerts its cardioprotective effects via antioxidant, anti-inflammatory, anti-apoptotic activities, and other mechanisms.

10.
J Food Prot ; 86(7): 100102, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37172905

RESUMEN

In this study, an eco-friendly procedure was established by vortex-assisted liquid-phase microextraction based on deep eutectic solvent (VA-LPME-DES) combined with graphite furnace atomic absorption spectroscopy (GFAAS). The performance of this method was demonstrated by the extraction and analysis of lead (Pb), cadmium (Cd), and mercury (Hg) in fish samples. The hydrophobic DES is considered as a green extractant (environmentally friendly and less toxic than common organic solvents) and is a suitable alternative to common toxic organic solvents and is made of l-menthol and ethylene glycol (EG) with a molar ratio of 1:1. Under optimized conditions, the method linearity was in the ranges of 0.15-150 µg kg-1 with the coefficient of determinations (r2) higher than 0.996. Accordingly, the detection limits for Pb, Cd, and Hg were 0.05, 0.05, and 0.10 µg kg-1, respectively. The analysis of fish samples showed that the concentration of toxic elements in fish caught from the Tigris and Euphrates Rivers is much higher than the concentration of these elements in locally farmed trout fish. Also, the analysis of fish-certified reference materials with presented procedure produced results that were in good agreement with the certified values. The results showed that VA-LPME-DES is a very cheap, fast, and environmental-friendly procedure for the analysis of toxic elements in different types of fish species.


Asunto(s)
Microextracción en Fase Líquida , Mercurio , Animales , Solventes/análisis , Disolventes Eutécticos Profundos , Cadmio/análisis , Irak , Plomo/análisis , Mercurio/análisis , Microextracción en Fase Líquida/métodos , Peces , Límite de Detección
11.
Pathol Res Pract ; 245: 154436, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37062208

RESUMEN

Prostate cancer (PCa) is known as one of the most prevalent malignancies globally and is not yet curable owing to its progressive nature. It has been well documented that Genetic and epigenetic alterations maintain mandatory roles in PCa development. Apoptosis, a form of programmed cell death, has been shown to be involved in a number of physiological processes. Apoptosis disruption is considered as one of the main mechanism involved in lots of pathological conditions, especially malignancy. There is ample of evidence in support of the fact that microRNAs (miRNAs) have crucial roles in several cellular biological processes, including apoptosis. Escaping from apoptosis is a common event in malignancy progression. Emerging evidence revealed miRNAs capabilities to act as apoptotic or anti-apoptotic factors by altering the expression levels of tumor inhibitor or oncogene genes. In the present narrative review, we described in detail how apoptosis dysfunction could be involved in PCa processes and additionally, the mechanisms behind miRNAs affect the apoptosis pathways in PCa. Identifying the mechanisms behind the effects of miRNAs and their targets on apoptosis can provide scientists new targets for PCa treatment.


Asunto(s)
MicroARNs , Neoplasias de la Próstata , Masculino , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Neoplasias de la Próstata/patología , Oncogenes , Apoptosis/genética , Regulación Neoplásica de la Expresión Génica/genética , Proliferación Celular
12.
Food Sci Nutr ; 11(3): 1297-1308, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36911818

RESUMEN

Adherence to plant-based diets is recommended to prevent and control chronic diseases. However, not all plant-based foods are healthy for this purpose. This study investigated the relationship between plant-based diets and risk factors for cardiovascular diseases (CVDs) in adults with chronic diseases. This cross-sectional study was performed on 3678 males and females (age range: 40-70 years) with chronic diseases who participated in the Kharameh cohort study. A validated semiquantitative food-frequency questionnaire was used to calculate the plant-based diet index (PDI), healthy plant-based diet index (hPDI), and unhealthy plant-based diet index (uPDI). Lipid profile, fasting blood sugar (FBS), blood pressure, and anthropometric indices were measured. Multivariable-adjusted logistic regression analysis was performed to determine the association between plant-based diets and CVDs risk factors. Higher adherence to the PDI was inversely associated with the level of FBS (odds ratio [OR] = 0.42; 95% confidence interval [CI]: 0.33-0.53; p < .001). A significant decrease was observed for total cholesterol in those with higher adherence to hPDI (OR = 0.80; 95% CI: 0.65-0.98; p = .035). Additionally, the score of uPDI was positively related to FBS (OR = 1.23; 95% CI: 1.00-1.53; p = .01), total cholesterol (OR = 1.23; 95% CI: 1.01-1.49; p = .061), and low-density lipoprotein (OR = 1.39; 95% CI: 1.13-1.71; p = .009). It was concluded that adherence to PDI and hPDI was related to a lower level of FBS and total cholesterol, respectively. Moreover, the findings suggested that regular intake of the uPDI was correlated with some risk factors for CVDs in adults with chronic diseases.

13.
Environ Res ; 227: 115722, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-36948284

RESUMEN

Nanomedicine is a field that combines biology and engineering to improve disease treatment, particularly in cancer therapy. One of the promising techniques utilized in this area is the use of micelles, which are nanoscale delivery systems that are known for their simple preparation, high biocompatibility, small particle size, and the ability to be functionalized. A commonly employed chemotherapy drug, Doxorubicin (DOX), is an effective inhibitor of topoisomerase II that prevents DNA replication in cancer cells. However, its efficacy is frequently limited by resistance resulting from various factors, including increased activity of drug efflux transporters, heightened oncogenic factors, and lack of targeted delivery. This review aims to highlight the potential of micelles as new nanocarriers for delivering DOX and to examine the challenges involved with employing chemotherapy to treat cancer. Micelles that respond to changes in pH, redox, and light are known as stimuli-responsive micelles, which can improve the targeted delivery of DOX and its cytotoxicity by facilitating its uptake in tumor cells. Additionally, micelles can be utilized to administer a combination of DOX and other drugs and genes to overcome drug resistance mechanisms and improve tumor suppression. Furthermore, micelles can be used in phototherapy, both photodynamic and photothermal, to promote cell death and increase DOX sensitivity in human cancers. Finally, the alteration of micelle surfaces with ligands can further enhance their targeted delivery for cancer suppression.


Asunto(s)
Doxorrubicina , Micelas , Humanos , Línea Celular Tumoral , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , Concentración de Iones de Hidrógeno
14.
Gene ; 867: 147285, 2023 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-36905948

RESUMEN

BACKGROUND AND AIM: Schizophrenia is one of the most severe psychiatric disorders. About 0.5 to 1% of the world's population suffers from this non-Mendelian disorder. Environmental and genetic factors seem to be involved in this disorder. In this article, we investigate the alleles and genotypic correlation of mononucleotide rs35753505 polymorphism of Neuregulin 1 (NRG1), one of the selected genes of schizophrenia, with psychopathology and intelligence. MATERIALS AND METHODS: 102 independent and 98 healthy patients participated in this study. DNA was extracted by the salting out method and the polymorphism (rs35753505) were amplified by polymerase chain reaction (PCR). Sanger sequencing was performed on PCR products. Allele frequency analysis was performed using COCAPHASE software, and genotype analysis was performed using Clump22 software. RESULTS: According to our study's statistical findings, all case samples from the three categories of men, women, and overall participants significantly differed from the control group in terms of the prevalence of allele C and the CC risk genotype. The rs35753505 polymorphism significantly raised Positive and Negative Syndrome Scale (PANSS) test results, according to a correlation analysis between the two variables. However, this polymorphism led to a significant decrease in overall intelligence in case samples compared to control samples. CONCLUSION: In this study, it seems that the rs35753505 polymorphism of NRG1 gene has a significant role in the sample of patients with schizophrenia in Iran and also in psychopathology and intelligence disorders.


Asunto(s)
Trastornos Mentales , Esquizofrenia , Femenino , Humanos , Frecuencia de los Genes , Predisposición Genética a la Enfermedad , Genotipo , Inteligencia/genética , Neurregulina-1/genética , Polimorfismo de Nucleótido Simple , Esquizofrenia/genética , Esquizofrenia/patología , Masculino
15.
Environ Res ; 228: 115767, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-36966991

RESUMEN

The predominant kind of liver cancer is hepatocellular carcinoma (HCC) that its treatment have been troublesome difficulties for physicians due to aggressive behavior of tumor cells in proliferation and metastasis. Moreover, stemness of HCC cells can result in tumor recurrence and angiogenesis occurs. Another problem is development of resistance to chemotherapy and radiotherapy in HCC cells. Genomic mutations participate in malignant behavior of HCC and nuclear factor-kappaB (NF-κB) has been one of the oncogenic factors in different human cancers that after nuclear translocation, it binds to promoter of genes in regulating their expression. Overexpression of NF-κB has been well-documented in increasing proliferation and invasion of tumor cells and notably, when its expression enhances, it induces chemoresistance and radio-resistance. Highlighting function of NF-κB in HCC can shed some light on the pathways regulating progression of tumor cells. The first aspect is proliferation acceleration and apoptosis inhibition in HCC cells mediated by enhancement in expression level of NF-κB. Moreover, NF-κB is able to enhance invasion of HCC cells via upregulation of MMPs and EMT, and it triggers angiogenesis as another step for increasing spread of tumor cells in tissues and organs. When NF-κB expression enhances, it stimulates chemoresistance and radio-resistance in HCC cells and by increasing stemness and population of cancer-stem cells, it can provide the way for recurrence of tumor. Overexpression of NF-κB mediates therapy resistance in HCC cells and it can be regulated by non-coding RNAs in HCC. Moreover, inhibition of NF-κB by anti-cancer and epigenetic drugs suppresses HCC tumorigenesis. More importantly, nanoparticles are considered for suppressing NF-κB axis in cancer and their prospectives and results can also be utilized for treatment of HCC. Nanomaterials are promising factors in treatment of HCC and by delivery of genes and drugs, they suppress HCC progression. Furthermore, nanomaterials provide phototherapy in HCC ablation.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Nanoestructuras , Humanos , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , FN-kappa B/genética , FN-kappa B/metabolismo , FN-kappa B/uso terapéutico , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Línea Celular Tumoral , Recurrencia Local de Neoplasia , Proliferación Celular
16.
J Food Prot ; 86(3): 100047, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36916554

RESUMEN

Monitoring aflatoxin M1 (AFM1) in dairy products and milk-based foods is very important. The main purpose of this research was to investigate and determine the amount and human health risk assessment of aflatoxin M1 (AFM1) in the most famous and widely used brands of infant dried powder milk (IDPM) consumed in Iran. For this study, 45 imported IDPM (IM-IDPM) samples and 45 domestically produced IDPM (DO-IDPM) samples (a total of 90 samples) were selected randomly. All samples were analyzed for AFM1 using a competitive enzyme-linked immunosorbent assay (ELISA) technique. The mean level and the percentage of positive samples for AFM1 in DO-IDPM were 9.2 ± 5.4 ng/kg and 73.3%, and for IM-IDPM, they were 5.1 ± 3.8 ng/kg and 33.3%, respectively. The average level of AFM1 in all samples was lower than the EU and Iranian national standards (25 ng/kg). AFM1 intake through IDPM consumption by Iranian infants less than one-year-old was lower than the allowable level, but the hazard quotient for infants less than 6 months was higher than the allowable level. Although the concentration of AFM1 in IDPM consumed in Iran is not hazardous, since Iranian infants may be exposed to AFM1 through other sources, including baby food, breast milk, raw and pasteurized milk, continuous monitoring of IDMP quality in Iranian markets should be taken.


Asunto(s)
Aflatoxina M1 , Leche , Femenino , Humanos , Lactante , Animales , Leche/química , Irán , Aflatoxina M1/análisis , Polvos , Contaminación de Alimentos/análisis , Leche Humana/química , Ensayo de Inmunoadsorción Enzimática
17.
Artículo en Inglés | MEDLINE | ID: mdl-36923735

RESUMEN

Background: Urtica dioica (UD), as a natural antioxidant, has positive effects on oocyte maturation. This study aimed to investigate the effects of hydro-alcoholic UD extract and retinoic acid on follicular development in an in vitro fertilization (IVF) condition. Methods: A total of 40 female Wistar rats were randomly divided into 5 groups: group 1 received normal saline, group 2 was given 25 mg/kg retinoic acid, group 3 was administered with 100 mg/kg UD extract, group 4 was treated with retinoic acid plus UD extract, and group 5 received 10 mg/kg olive oil. The histomorphometric parameters were analyzed, including the number of follicles, follicular atrophy, fertilized oocytes, 2-cell embryos, dead embryos, and blastocysts. Results: Retinoic acid caused a significant increase in the primary, preantral, and atretic follicles and a substantial decrease in the corpus luteum compared with the control group (p<0.001). The number of preantral, antral follicles, and corpus luteum was significantly higher in group 3 compared with group 1 (p<0.001). Moreover, coadministration of UD plus retinoic acid (group 4) significantly reduced the atretic follicles (p<0.05). Conclusion: Based on the results, UD herbal extract, as a natural antioxidant agent, could reduce the adverse effects of retinoic acid on oocyte maturation in an IVF condition.

18.
Molecules ; 28(2)2023 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-36677899

RESUMEN

The blood-brain barrier (BBB) serves as a protective barrier for the central nervous system (CNS) against drugs that enter the bloodstream. The BBB is a key clinical barrier in the treatment of CNS illnesses because it restricts drug entry into the brain. To bypass this barrier and release relevant drugs into the brain matrix, nanotechnology-based delivery systems have been developed. Given the unstable nature of NPs, an appropriate amount of a biocompatible polymer coating on NPs is thought to have a key role in reducing cellular cytotoxicity while also boosting stability. Human serum albumin (HSA), poly (lactic-co-glycolic acid) (PLGA), Polylactide (PLA), poly (alkyl cyanoacrylate) (PACA), gelatin, and chitosan are only a few of the significant polymers mentioned. In this review article, we categorized polymer-coated nanoparticles from basic to complex drug delivery systems and discussed their application as novel drug carriers to the brain.


Asunto(s)
Neoplasias Encefálicas , Nanopartículas , Enfermedades Neurodegenerativas , Humanos , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Ácido Poliglicólico , Ácido Láctico , Sistemas de Liberación de Medicamentos , Portadores de Fármacos , Neoplasias Encefálicas/tratamiento farmacológico , Barrera Hematoencefálica
19.
IET Nanobiotechnol ; 17(1): 22-31, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36420828

RESUMEN

Hyperthermia is an additional treatment method to radiation therapy/chemotherapy, which increases the survival rate of patients without side effects. Nowadays, Auroshell nanoparticles have attracted much attention due to their precise control over heat use for medical purposes. In this research, iron/gold Auroshell nanoparticles were synthesised using green nanotechnology approach. Auroshell gold@hematite nanoparticles were synthesised and characterised with rosemary extract in one step and the green synthesised nanoparticles were characterised by X-ray powder diffraction, SEM, high-resolution transmission electron microscopy, and X-ray photoelectron spectroscopy analysis. Cytotoxicity of Auroshell iron@gold nanoparticles against normal HUVEC cells and glioblastoma cancer cells was evaluated by 2,5-diphenyl-2H-tetrazolium bromide method, water bath hyperthermia, and combined method of water bath hyperthermia and nano-therapy. Auroshell gold@hematite nanoparticles with minimal toxicity are safe against normal cells. The gold shell around the magnetic core of magnetite caused the environmental and cellular biocompatibility of these Auroshell nanoparticles. These magnetic nanoparticles with targeted control and transfer to the tumour tissue led to uniform heating of malignant tumours as the most efficient therapeutic agent.


Asunto(s)
Hipertermia Inducida , Nanopartículas de Magnetita , Oligoelementos , Humanos , Oro/química , Nanopartículas de Magnetita/uso terapéutico , Nanopartículas de Magnetita/química , Hipertermia Inducida/métodos , Hierro , Agua
20.
Cell Biol Int ; 47(2): 327-340, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36342241

RESUMEN

The serious problems of conventional breast cancer therapy strategies such as drug resistance, severe side effects, and lack of selectivity prompted the development of various cold atmospheric plasma (CAP) devices. Due to its advanced technology, CAP can produce a unique environment rich in reactive oxygen and nitrogen species (RONS), photons, charged ions, and an electric field, making it a promising revolutionary platform for cancer therapy. Despite substantial technological successes, CAP-based therapeutic systems are encounter with distinct limitations, including low control of the generated RONS, poor knowledge about its anticancer mechanisms, and challenges concerning designing, manufacturing, clinical translation, and commercialization, which must be resolved. The latest developments in CAP-based therapeutic systems for breast cancer treatment are discussed in this review. More significantly, the integration of CAP-based medicine approaches with other breast cancer therapies, including chemo- and nanotherapy is thoroughly addressed.


Asunto(s)
Neoplasias de la Mama , Gases em Plasma , Humanos , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Gases em Plasma/uso terapéutico , Especies Reactivas de Oxígeno , Especies de Nitrógeno Reactivo , Oxígeno
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...