RESUMEN
Nonfullerene acceptors (NFAs) have dramatically improved the power conversion efficiency (PCE) of organic photovoltaics (OPV) in recent years; however, their device stability currently remains a bottleneck for further technological progress. Photocatalytic decomposition of nonfullerene acceptor molecules at metal oxide electron transport layer (ETL) interfaces has in several recent reports been demonstrated as one of the main degradation mechanisms for these high-performing OPV devices. While some routes for mitigating such degradation effects have been proposed, e.g., through a second layer integrated on the ETL surface, no clear strategy that complies with device scale-up and application requirements has been presented to date. In this work, it is demonstrated that the development of sputtered titanium oxide layers as ETLs in nonfullerene acceptor based OPV can lead to significantly enhanced device lifetimes. This is achieved by tuning the concentration of defect states at the oxide surface, via the reactive sputtering process, to mitigate the photocatalytic decomposition of NFA molecules at the metal oxide interlayers. Reduced defect state formation at the oxide surface is confirmed through X-ray photoelectron spectroscopy (XPS) studies, while the reduced photocatalytic decomposition of nonfullerene acceptor molecules is confirmed via optical spectroscopy investigations. The PBDB-T:ITIC organic solar cells show power conversion efficiencies of around 10% and significantly enhanced photostability. This is achieved through a reactive sputtering process that is fully scalable and industry compatible.
RESUMEN
The recent advent of the new class of organic molecules, the so-called non-fullerene acceptors, has resulted in skyrocketing power conversion efficiencies of organic solar cells. However, rapid degradation occurs under illumination, particularly when photocatalytic metal oxide electron transport layers are used in these devices. We introduced vitamin C (ascorbic acid) into the organic solar cells as a photostabilizer and systematically studied its photostabilizing effect on inverted PBDB-T:IT-4F devices. The presence of vitamin C as an antioxidant layer between the ZnO electron transport layer and the photoactive layer strongly suppressed the photocatalytic effect of ZnO that induces NFA photodegradation. Upon 96 h of exposure to AM 1.5G 1 Sun irradiation, the reference devices lost 64% of their initial efficiency, while those containing vitamin C lost only 38%. The UV-visible absorption, impedance spectroscopy, and light-dependent voltage and current measurements reveal that vitamin C reduces the photobleaching of NFA molecules and suppresses the charge recombination. This simple approach using a low-cost, naturally occurring antioxidant, provides an efficient strategy for improving photostability of organic semiconductor-based devices.
RESUMEN
One key challenge in the development of viable organic photovoltaic devices is to design component molecules that do not degrade during combined exposure to oxygen and light. Such molecules should thus remain comparatively unreactive towards singlet molecular oxygen and not act as photosensitizers for the generation of this undesirable species. Here, novel redox-active chromophores that combine these two properties are presented. By functionalizing indenofluorene-extended tetrathiafulvalenes (IF-TTFs) with cyano groups at the indenofluorene core using Pd-catalyzed cyanation reactions, we find that the reactivity of the exocyclic fulvene carbon-carbon double bonds towards singlet oxygen is considerably reduced. The new cyano-functionalized IF-TTFs were tested in non-fullerene acceptor based organic photovoltaic proof-of-principle devices, revealing enhanced device stability.
Asunto(s)
Oxígeno , Oxígeno Singlete , Oxígeno Singlete/química , Fármacos Fotosensibilizantes/química , CarbonoRESUMEN
Photochemical and mechanical stability are critical in the production and application of organic solar cells. While these factors can individually be improved using different additives, there is no example of studies on the combined effects of such additive-assisted stabilization. In this study, the properties of PTB7:[70]PCBM organic solar cells are studied upon implementation of two additives: the carotenoid astaxanthin (AX) for photochemical stability and the silicone polydimethylsiloxane (PDMS) for improved mechanical properties. A newly designed additive, AXcPDMS, based on astaxanthin covalently bonded to PDMS was also examined. Lifetime tests, produced in ISOS-L-2 conditions, reveal an improvement in the accumulated power generation (APG) of 10% with pure AX, of 90% when AX is paired with PDMS, and of 140% when AXcPDMS is added in the active layer blend, as compared to the control devices. Singlet oxygen phosphorescence measurements are utilized to study the ability of AX and AXcPDMS to quench singlet oxygen and its precursors in the films. The data are consistent with the strong stabilization effect of the carotenoids. While AX and AXcPDMS are both efficient photochemical stabilizers, the improvement in device stability observed in the presence of AXcPDMS is likely due to a more favorable localization of the stabilizer within the blend. The mechanical properties of the active layers were investigated by tensile testing and cohesive fracture measurements, showing a joint improvement of the photooxidative stability and the mechanical properties, thus yielding organic solar cell devices that are promising for flexible photovoltaic applications.
RESUMEN
Recent efficiency records of organic photovoltaics (OPV) highlight stability as a limiting weakness. Incorporation of stabilizers is a desirable approach for inhibiting degradation-it is inexpensive and readily up-scalable. However, to date, such additives have had limited success. We show that ß-carotene (BC), an inexpensive and green, naturally occurring antioxidant, dramatically improves OPV stability. When compared to nonstabilized reference devices, the accumulated power generation of PTB7:[70]PCBM devices in the presence of BC increases by an impressive factor of 6, due to stabilization of both the burn-in and the lifetime, and by a factor of 21 for P3HT:[60]PCBM devices, owing to a longer lifetime. Using electron spin resonance and time-resolved near-IR emission spectroscopies, we probed radical and singlet oxygen concentrations. We demonstrate that singlet oxygen sensitized by [70]PCBM causes the "burn-in" of PTB7:[70]PCBM devices and that BC effectively mitigates it. Our results provide an effective solution to the problem that currently limits widespread use of OPV.
RESUMEN
Photo-initiated, oxygen-mediated degradation of the molecules in the active layer of organic photovoltaic, OPV, devices currently limits advances in the development of solar cells. To address this problem systematically and at a molecular level, it is informative to quantify the kinetics of the pertinent processes, both in solution phase and in solid films. To this end, we examined the oxygen-dependent photophysics and photochemistry of selected functionalized fullerenes, thiophene derivatives, and a subphthalocyanine commonly used in OPV devices. We find that the photosensitized production of singlet molecular oxygen, O2(a1Δg), by these molecules is a key step in the degradation process. We demonstrate that the addition of either ß-carotene or astaxanthin as antioxidants can inhibit degradation by a combination of three processes: (a) deactivation of O2(a1Δg) to the oxygen ground state, O2(X3Σg -), (b) quenching of the O2(a1Δg) precursor, and (c) sacrificial reactions of the carotenoid with free radicals formed in the photo-initiated reactions. For OPV systems in which reaction with O2(a1Δg) contributes to the degradation, the first two of these processes are desired and should have appreciable impact in prolonging the longevity of OPV devices because they do not result in a chemical change of the system.
RESUMEN
We report on the improvement of long-term stability of organic solar cells (OPV) using hindered phenol based antioxidants as stabilizing additives. A set of seven commercially available hindered phenols are investigated for use in bulk-heterojunction OPV. Polymer:fullerene films based on poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) are characterized with respect to the initial power conversion efficiency and the long-term stability improvement under illumination in ambient conditions. FTIR spectroscopy is used to trace chemical degradation over time. OPV performance is recorded under ISOS-3 conditions, and an improved long-term performance of OPV devices, manifested in increased accumulated power generation (APG), is found for octadecyl 3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate. Using this additive, APG is increased by a factor of 3 compared to the reference. Observed differences in the stabilization of tested additives are discussed in terms of energetic trap states formation within the HOMO/LUMO gap of the photoactive material, morphological changes, and chemical structure.