Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Vavilovskii Zhurnal Genet Selektsii ; 26(5): 477-485, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36128570

RESUMEN

The physiological and biochemical activity of plant-microbial associations enables them to determine the mobility, bioavailability, and accumulation of heavy metals in plant tissues. These abilities are the basis for the use of plants and their associated microorganisms in the development of approaches that ensure both the prevention of the ingress of toxic metals into food crops and the extraction of pollutants from polluted soils by using phytoremediation technologies. Whether plant-microbial complexes are used successfully depends on the knowledge of how specific organisms interact with heavy metals. We evaluated the effect of copper ions on common wheat (Triticum aestivum L.) inoculated with three plant-growth-promoting rhizobacteria (PGPR) of the genus Azospirillum. We analyzed the growth variables of 14-day-old wheat seedlings, the content of photosynthesis pigments, the activity of plant oxidoreductases, and the accumulation of copper by plant tissues. All strains more or less compensated for copper toxicity to seedling development and increased metal accumulation in roots and shoots. Copper affected the photosynthetic apparatus of the inoculated plants, primarily by decreasing the content of chlorophyll b. An analysis of the activity of plant oxidoreductases (peroxidases and phenoloxidases), which are involved in the physiological responses of plants to pollutant stress, showed strain-specific dependence and a significant effect of copper on the inoculated plants. Overall, the obtained results clearly show that the effect of Azospirillum on the physiological and biochemical status of wheat is diverse. The compensatory effect of bacteria on copper toxicity and the simultaneous increase in metal accumulation in plant tissues can be considered as mutually exclusive crop-production aspects associated with the growing of food plants in heavy-metal-polluted areas.

2.
Vavilovskii Zhurnal Genet Selektsii ; 24(3): 315-324, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-33659814

RESUMEN

Microbial culture collections are very important components of biological science. They provide researchers with material for studies and preserve biological resources. One such collection is the Collection of Rhizosphere Microorganisms, kept at the Institute of Biochemistry and Physiology of Plants and Microorganisms of the Russian Academy of Sciences, Saratov (IBPPM). Its activity is primarily directed toward the isolation and preservation of microorganisms from the plant root zone. The international research interest in microorganisms from this ecological niche is not waning, because they are very important for plant growth and development and, consequently, for plant breeding. The group of bacteria with properties of significance for plants has been given the name "plant-growth-promoting rhizobacteria" (PGPR). This group includes nitrogen-fixing soil alpha-proteobacteria of the genus Azospirillum, which form the core of the IBPPM collection. First discovered by Brazilian scientists in the 1970s, azospirilla are now a universally recognized model object for studying the molecular mechanisms underlying plant-bacterium interactions. The broad range of useful properties found in these microorganisms, including the fixation of atmospheric nitrogen, production of phytohormones, solubilization of phosphates, control of pathogens, and formation of induced systemic resistance in the colonized plants, make these bacteria an all-purpose tool that has been used for several decades in basic and applied research. This article reviews the current state of Azospirillum research, with emphasis on the results obtained at the IBPPM. Scientific expeditions across the Saratov region undertaken by IBPPM microbiologists in the early 1980s formed the basis for the unique collection of members of this bacterial taxon. Currently, the collection has more than 160 Azospirillum strains and is one of the largest collections in Europe. The research conducted at the IBPPM is centered mostly on the Azospirillum structures involved in associative symbiosis with plants, primarily extracellular polysaccharide-containing complexes and lectins. The development of immunochemical methods contributed much to our understanding of the overall organization of the surface of rhizosphere bacteria. The extensive studies of the Azospirillum genome largely deepened our understanding of the role of the aforesaid bacterial structures, motility, and biofilms in the colonization of host plant roots. Of interest are also applied studies focusing on agricultural and environmental technologies and on the "green" synthesis of Au, Ag, and Se nanoparticles. The Collection of Rhizosphere Microorganisms continues to grow, being continually supplemented with newly isolated strains. The data presented in this article show the great importance of specialized microbial culture repositories, such as the IBPPM collection, for the development and maintenance of the microbial research base and for the effective solution of basic and applied tasks in microbiology.

3.
Prikl Biokhim Mikrobiol ; 52(6): 590-8, 2016.
Artículo en Ruso | MEDLINE | ID: mdl-29513481

RESUMEN

The dependence of the degree of fluorene and fluoranthene degradation by the fungus Pleurotus ostreatus D1 on the culture medium composition has been studied. Polycyclic aromatic hydrocarbons (PAHs) have been transformed in Kirk's medium (under conditions of laccase production) with the formation of a quinone metabolite and 9-fluorenone upon the use of fluoranthene and fluorene as substrates, respectively. More complete degradation with the formation of an intermediate metabolite, phthalic acid that has undergone subsequent utilization, has occurred in basidiomycete-rich medium (under the production of both laccase and versatile peroxidase). The formation of phthalic acid as a metabolite of fluoranthene degradation by lignolytic fungi has been revealed for the first time. The data allow the supposition that both extracellular laccase and laccase on the mycelium surface can participate in the initial stages of PAH metabolism, while versatile peroxidase is necessary for the oxidation of the formed metabolites. A scheme of fluorene metabolism by Pleurotus ostreatus D1 is suggested.


Asunto(s)
Fluorenos/metabolismo , Pleurotus/metabolismo
4.
Prikl Biokhim Mikrobiol ; 52(6): 599-608, 2016.
Artículo en Ruso | MEDLINE | ID: mdl-29513483

RESUMEN

A total of 17 basidiomycete strains causing white rot and growing on oil-contaminated substrates have been screened. Three strains with high (Steccherinum murashkinskyi), average (Trametes maxima), and low (Pleurotus ostreatus) capacities for the colonization of oil-contaminated substrates have been selected. The potential for degrading crude oil hydrocarbons has been assessed with the use of fungi grown on nonsterile soil and peat at low temperatures. Candida sp. and Rhodococcus sp. commercial strains have been used as reference organisms with oil-degrading ability. All microorganisms introduced in oil-contaminated soil have proved to be ineffective, whereas the inoculation of peat with basidiomycetes and oil-degrading microorganisms accelerated the destruction of oil hydrocarbons. The greatest degradation potential of oil-aliphatic hydrocarbons has been found in S. murashlinskyi. T. maxima turned out to be the most successful in degrading aromatic hydrocarbons. It has been suggested that aboriginal microflora contributes importantly to the effectiveness of oil-destructing microorganisms. T. maxima and S. murashkinskyi strains are promising for further study as oil-oxidizing agents during bioremediation of oil-contaminated peat soil under conditions of low temperatures.


Asunto(s)
Frío , Petróleo/metabolismo , Pleurotus/crecimiento & desarrollo , Microbiología del Suelo , Suelo , Trametes/crecimiento & desarrollo , Biodegradación Ambiental
5.
Int J Phytoremediation ; 10(6): 486-502, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-19260228

RESUMEN

The aim of this research was to select plant species that could be effective in the phytoremediation ofa former oil-sludge pit. Seven crop plants (Triticum aestivum L., Secale cereale L., Avena sativa L., Hordeum vulgare, Sorghum bicolor L Moench, Panicum miliaceum L, and Zea mays L.),five wild grasses (Lolium perenne L., Bromopsis inermis, Agropyron cristatum L., Agropyrum tenerum L., and Festuca pratensis Huds.), and three legumes (Medicago sativa L., Trifolium pratense L., and Onobrychis antasiatica Khin.) were screened for phytotoxicity, including the assessment of germination, shoot biomass, and root biomass, in a pot experiment. The estimation of oil-sludge degradation in the root zone of the tested plants showed that rye accelerated cleanup most effectively, degrading all of the main contaminant fractions in the oil sludge by a total of 52%. Although alfalfa had a lower phytoremediation potential than did rye, it maintained large numbers of soil microorganisms, including polycyclic aromatic hydrocarbon degraders, in its rhizosphere. Rye and alfalfa were chosen for a large-scale study to remediate an oil-sludge pit on the grounds of a petroleum refinery. Remediation monitoring confirmed the effectiveness of rye: the oil-sludge content decreased consistently for 3 years and remained low in comparison with the results from other plant species.


Asunto(s)
Biodegradación Ambiental , Petróleo/análisis , Petróleo/metabolismo , Plantas/metabolismo , Contaminantes del Suelo/química , Contaminantes del Suelo/metabolismo , Suelo/análisis , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...