Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
NPJ Genom Med ; 9(1): 22, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38531898

RESUMEN

Pathogenic loss-of-function variants in BGN, an X-linked gene encoding biglycan, are associated with Meester-Loeys syndrome (MRLS), a thoracic aortic aneurysm/dissection syndrome. Since the initial publication of five probands in 2017, we have considerably expanded our MRLS cohort to a total of 18 probands (16 males and 2 females). Segregation analyses identified 36 additional BGN variant-harboring family members (9 males and 27 females). The identified BGN variants were shown to lead to loss-of-function by cDNA and Western Blot analyses of skin fibroblasts or were strongly predicted to lead to loss-of-function based on the nature of the variant. No (likely) pathogenic missense variants without additional (predicted) splice effects were identified. Interestingly, a male proband with a deletion spanning the coding sequence of BGN and the 5' untranslated region of the downstream gene (ATP2B3) presented with a more severe skeletal phenotype. This may possibly be explained by expressional activation of the downstream ATPase ATP2B3 (normally repressed in skin fibroblasts) driven by the remnant BGN promotor. This study highlights that aneurysms and dissections in MRLS extend beyond the thoracic aorta, affecting the entire arterial tree, and cardiovascular symptoms may coincide with non-specific connective tissue features. Furthermore, the clinical presentation is more severe and penetrant in males compared to females. Extensive analysis at RNA, cDNA, and/or protein level is recommended to prove a loss-of-function effect before determining the pathogenicity of identified BGN missense and non-canonical splice variants. In conclusion, distinct mechanisms may underlie the wide phenotypic spectrum of MRLS patients carrying loss-of-function variants in BGN.

2.
Nat Med ; 29(3): 679-688, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36928819

RESUMEN

The genetic etiologies of more than half of rare diseases remain unknown. Standardized genome sequencing and phenotyping of large patient cohorts provide an opportunity for discovering the unknown etiologies, but this depends on efficient and powerful analytical methods. We built a compact database, the 'Rareservoir', containing the rare variant genotypes and phenotypes of 77,539 participants sequenced by the 100,000 Genomes Project. We then used the Bayesian genetic association method BeviMed to infer associations between genes and each of 269 rare disease classes assigned by clinicians to the participants. We identified 241 known and 19 previously unidentified associations. We validated associations with ERG, PMEPA1 and GPR156 by searching for pedigrees in other cohorts and using bioinformatic and experimental approaches. We provide evidence that (1) loss-of-function variants in the Erythroblast Transformation Specific (ETS)-family transcription factor encoding gene ERG lead to primary lymphoedema, (2) truncating variants in the last exon of transforming growth factor-ß regulator PMEPA1 result in Loeys-Dietz syndrome and (3) loss-of-function variants in GPR156 give rise to recessive congenital hearing impairment. The Rareservoir provides a lightweight, flexible and portable system for synthesizing the genetic and phenotypic data required to study rare disease cohorts with tens of thousands of participants.


Asunto(s)
Estudio de Asociación del Genoma Completo , Enfermedades Raras , Humanos , Enfermedades Raras/genética , Teorema de Bayes , Genotipo , Estudio de Asociación del Genoma Completo/métodos , Fenotipo , Proteínas de la Membrana
3.
Genet Med ; 21(4): 877-886, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30181606

RESUMEN

PURPOSE: Many women with X chromosome aneuploidy undergo lifetime clinical monitoring for possible complications. However, ascertainment of cases in the clinic may mean that the penetrance has been overestimated. METHODS: We characterized the prevalence and phenotypic consequences of X chromosome aneuploidy in a population of 244,848 women over 40 years of age from UK Biobank, using single-nucleotide polymorphism (SNP) array data. RESULTS: We detected 30 women with 45,X; 186 with mosaic 45,X/46,XX; and 110 with 47,XXX. The prevalence of nonmosaic 45,X (12/100,000) and 47,XXX (45/100,000) was lower than expected, but was higher for mosaic 45,X/46,XX (76/100,000). The characteristics of women with 45,X were consistent with the characteristics of a clinically recognized Turner syndrome phenotype, including short stature and primary amenorrhea. In contrast, women with mosaic 45,X/46,XX were less short, had a normal reproductive lifespan and birth rate, and no reported cardiovascular complications. The phenotype of women with 47,XXX included taller stature (5.3 cm; SD = 5.52 cm; P = 5.8 × 10-20) and earlier menopause age (5.12 years; SD = 5.1 years; P = 1.2 × 10-14). CONCLUSION: Our results suggest that the clinical management of women with 45,X/46,XX mosaicism should be minimal, particularly those identified incidentally.


Asunto(s)
Cromosomas Humanos X/genética , Genética de Población , Mosaicismo , Síndrome de Turner/genética , Adulto , Anciano , Aneuploidia , Femenino , Humanos , Cariotipo , Persona de Mediana Edad , Penetrancia , Fenotipo , Polimorfismo de Nucleótido Simple/genética , Trisomía , Síndrome de Turner/patología , Reino Unido
5.
J Med Genet ; 55(7): 497-504, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29574422

RESUMEN

BACKGROUND: Genomic imprinting results from the resistance of germline epigenetic marks to reprogramming in the early embryo for a small number of mammalian genes. Genetic, epigenetic or environmental insults that prevent imprints from evading reprogramming may result in imprinting disorders, which impact growth, development, behaviour and metabolism. We aimed to identify genetic defects causing imprinting disorders by whole-exome sequencing in families with one or more members affected by multilocus imprinting disturbance. METHODS: Whole-exome sequencing was performed in 38 pedigrees where probands had multilocus imprinting disturbance, in five of whom maternal variants in NLRP5 have previously been found. RESULTS: We now report 15 further pedigrees in which offspring had disturbance of imprinting, while their mothers had rare, predicted-deleterious variants in maternal effect genes, including NLRP2, NLRP7 and PADI6. As well as clinical features of well-recognised imprinting disorders, some offspring had additional features including developmental delay, behavioural problems and discordant monozygotic twinning, while some mothers had reproductive problems including pregnancy loss. CONCLUSION: The identification of 20 putative maternal effect variants in 38 families affected by multilocus imprinting disorders adds to the evidence that maternal genetic factors affect oocyte fitness and thus offspring development. Testing for maternal-effect genetic variants should be considered in families affected by atypical imprinting disorders.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Síndrome de Beckwith-Wiedemann/genética , Desiminasas de la Arginina Proteica/genética , Síndrome de Silver-Russell/genética , Proteínas Reguladoras de la Apoptosis , Síndrome de Beckwith-Wiedemann/patología , Cromosomas Humanos Par 11/genética , Metilación de ADN/genética , Femenino , Impresión Genómica/genética , Mutación de Línea Germinal/genética , Humanos , Recién Nacido , Enfermedades del Recién Nacido/genética , Enfermedades del Recién Nacido/fisiopatología , Herencia Materna , Linaje , Embarazo , Arginina Deiminasa Proteína-Tipo 6 , Síndrome de Silver-Russell/fisiopatología
6.
Am J Hum Genet ; 101(1): 139-148, 2017 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-28686853

RESUMEN

We report 15 individuals with de novo pathogenic variants in WDR26. Eleven of the individuals carry loss-of-function mutations, and four harbor missense substitutions. These 15 individuals comprise ten females and five males, and all have intellectual disability with delayed speech, a history of febrile and/or non-febrile seizures, and a wide-based, spastic, and/or stiff-legged gait. These subjects share a set of common facial features that include a prominent maxilla and upper lip that readily reveal the upper gingiva, widely spaced teeth, and a broad nasal tip. Together, these features comprise a recognizable facial phenotype. We compared these features with those of chromosome 1q41q42 microdeletion syndrome, which typically contains WDR26, and noted that clinical features are consistent between the two subsets, suggesting that haploinsufficiency of WDR26 contributes to the pathology of 1q41q42 microdeletion syndrome. Consistent with this, WDR26 loss-of-function single-nucleotide mutations identified in these subjects lead to nonsense-mediated decay with subsequent reduction of RNA expression and protein levels. We derived a structural model of WDR26 and note that missense variants identified in these individuals localize to highly conserved residues of this WD-40-repeat-containing protein. Given that WDR26 mutations have been identified in ∼1 in 2,000 of subjects in our clinical cohorts and that WDR26 might be poorly annotated in exome variant-interpretation pipelines, we would anticipate that this disorder could be more common than currently appreciated.


Asunto(s)
Facies , Marcha/genética , Haploinsuficiencia/genética , Discapacidad Intelectual/genética , Proteínas/genética , Convulsiones/genética , Proteínas Adaptadoras Transductoras de Señales , Secuencia de Aminoácidos , Secuencia de Bases , Preescolar , Deleción Cromosómica , Femenino , Crecimiento y Desarrollo/genética , Humanos , Discapacidad Intelectual/complicaciones , Masculino , Mutación/genética , Proteínas/química , Estabilidad del ARN/genética , Convulsiones/complicaciones , Síndrome
7.
Genet Med ; 18(4): 309-15, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26248010

RESUMEN

PURPOSE: Maternal uniparental disomy of chromosome 20 (UPD(20)mat) has been reported in only four patients, three of whom also had mosaicism for complete or partial trisomy of chromosome 20. We sought to evaluate the clinical significance of isolated UPD(20)mat in eight individuals. METHODS: We evaluated phenotypic and genomic findings of a series of eight new patients with UPD(20)mat. RESULTS: All eight individuals with UPD(20)mat had intrauterine growth restriction, short stature, and prominent feeding difficulties with failure to thrive. As a common feature, they often required gastric tube feeds. Genomic data in most patients are indicative of UPD as a result of trisomy rescue after meiosis II nondisjunction. CONCLUSION: We describe the first natural history of the disorder and the results of therapeutic interventions, including the frequent requirement of direct gastric feedings only during the first few years of life, and propose that growth hormone supplementation is probably safe and effective for this condition. We suggest that UPD(20)mat can be regarded as a new imprinting disorder and its identification requires specialized molecular testing, which should be performed in patients with early-onset idiopathic isolated growth failure.Genet Med 18 4, 309-315.


Asunto(s)
Cromosomas Humanos Par 20 , Trastornos del Crecimiento/diagnóstico , Trastornos del Crecimiento/genética , Disomía Uniparental/diagnóstico , Disomía Uniparental/genética , Niño , Preescolar , Facies , Femenino , Impresión Genómica , Genotipo , Trastornos del Crecimiento/tratamiento farmacológico , Hormona de Crecimiento Humana/deficiencia , Hormona de Crecimiento Humana/uso terapéutico , Humanos , Lactante , Masculino , Repeticiones de Microsatélite , Mosaicismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Fenotipo , Polimorfismo de Nucleótido Simple
8.
Nat Commun ; 6: 8086, 2015 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-26323243

RESUMEN

Human-imprinting disorders are congenital disorders of growth, development and metabolism, associated with disturbance of parent of origin-specific DNA methylation at imprinted loci across the genome. Some imprinting disorders have higher than expected prevalence of monozygotic twinning, of assisted reproductive technology among parents, and of disturbance of multiple imprinted loci, for which few causative trans-acting mutations have been found. Here we report mutations in NLRP5 in five mothers of individuals affected by multilocus imprinting disturbance. Maternal-effect mutations of other human NLRP genes, NLRP7 and NLRP2, cause familial biparental hydatidiform mole and multilocus imprinting disturbance, respectively. Offspring of mothers with NLRP5 mutations have heterogenous clinical and epigenetic features, but cases include a discordant monozygotic twin pair, individuals with idiopathic developmental delay and autism, and families affected by infertility and reproductive wastage. NLRP5 mutations suggest connections between maternal reproductive fitness, early zygotic development and genomic imprinting.


Asunto(s)
Autoantígenos/genética , Síndrome de Beckwith-Wiedemann/genética , Diabetes Mellitus/genética , Impresión Genómica/genética , Enfermedades del Recién Nacido/genética , Síndrome de Silver-Russell/genética , Aborto Espontáneo/genética , Adolescente , Adulto , Trastorno Autístico/genética , Simulación por Computador , Variaciones en el Número de Copia de ADN , Metilación de ADN , Epigénesis Genética , Femenino , Humanos , Mola Hidatiforme/genética , Infertilidad Femenina/genética , Masculino , Proteínas Mitocondriales , Madres , Mutación , Proteínas Nucleares , Obesidad/genética , Reacción en Cadena de la Polimerasa , Embarazo , Análisis de Secuencia de ADN , Gemelos Monocigóticos , Neoplasias Uterinas/genética , Adulto Joven
9.
Am J Med Genet A ; 167A(9): 2052-64, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26097203

RESUMEN

The 8p23.1 duplication syndrome (8p23.1 DS) is a recurrent genomic condition with an estimated prevalence of 1 in 58,000. The core 3.68 Mb duplication contains 32 genes of which five are currently candidates for the phenotypic features. Here we describe four patients and five families with eight microduplications of 8p23.1 ranging from 187 to 1082 kb in size and one atypical duplication of 4 Mb. These indicate that a minimal region of overlap (MRO) in medial 8p23.1 can give rise to features of 8p23.1 DS including developmental delay, dysmorphism, macrocephaly and otitis media, but not congenital heart disease (CHD). This MRO spans 776 kb (chr8:10,167,881-10,943,836 hg19) and contains SOX7 and seven of the other 32 core 8p23.1 DS genes. In centromeric 8p23.1, microduplications including GATA4 can give rise to non-syndromic CHD but the clinical significance of two smaller centromeric microduplications without GATA4 was uncertain due to severe neurological profiles not usually found in 8p23.1 DS. The clinical significance of three further 8p23.1 microduplications was uncertain due to additional genetic factors without which the probands might not have come to medical attention. Variable expressivity was indicated by the almost entirely unaffected parents in all five families and the mildly affected sibling in one. Intronic interruptions of six genes by microduplication breakpoint intervals had no apparent additional clinical consequences. Our results suggest that 8p23.1 DS is an oligogenetic condition largely caused by the duplication and interactions of the SOX7 and GATA4 transcription factors.


Asunto(s)
Anomalías Múltiples/genética , Cromosomas Humanos Par 8/genética , Discapacidades del Desarrollo/genética , Duplicación de Gen/genética , Adolescente , Niño , Preescolar , Deleción Cromosómica , Femenino , Factor de Transcripción GATA4/genética , Cardiopatías Congénitas/genética , Humanos , Lactante , Recién Nacido , Masculino , Síndrome
10.
J Med Genet ; 51(4): 264-7, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24459211

RESUMEN

OBJECTIVE: Split-hand/foot malformation type 1 is an autosomal dominant condition with reduced penetrance and variable expression. We report three individuals from two families with split-hand/split-foot malformation (SHFM) in whom next generation sequencing was performed to investigate the cause of their phenotype. METHODS AND RESULTS: The first proband has a de novo balanced translocation t(2;7)(p25.1;q22) identified by karyotyping. Whole genome sequencing showed that the chromosome 7 breakpoint is situated within the SHFM1 locus on chromosome 7q21.3. This separates the DYNC1I1 exons recently identified as limb enhancers in mouse studies from their target genes, DLX5 and DLX6. In the second family, X-linked recessive inheritance was suspected and exome sequencing was performed to search for a mutation in the affected proband and his uncle. No coding mutation was found within the SHFM2 locus at Xq26 or elsewhere in the exome, but a 106 kb deletion within the SHFM1 locus was detected through copy number analysis. Genome sequencing of the deletion breakpoints showed that the DLX5 and DLX6 genes are disomic but the putative DYNC1I1 exon 15 and 17 enhancers are deleted. CONCLUSIONS: Exome sequencing identified a 106 kb deletion that narrows the SHFM1 critical region from 0.9 to 0.1 Mb and confirms a key role of DYNC1I1 exonic enhancers in normal limb formation in humans.


Asunto(s)
Dineínas Citoplasmáticas/genética , Exones/genética , Reordenamiento Génico/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Proteínas de Homeodominio/genética , Deformidades Congénitas de las Extremidades/genética , Factores de Transcripción/genética , Animales , Aberraciones Cromosómicas , Elementos de Facilitación Genéticos/genética , Familia , Femenino , Regulación de la Expresión Génica , Sitios Genéticos/genética , Humanos , Masculino , Ratones , Mutación/genética , Penetrancia
11.
Nat Genet ; 44(7): 793-6, 2012 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-22610116

RESUMEN

Cantú syndrome is characterized by congenital hypertrichosis, distinctive facial features, osteochondrodysplasia and cardiac defects. By using family-based exome sequencing, we identified a de novo mutation in ABCC9. Subsequently, we discovered novel dominant missense mutations in ABCC9 in 14 of the 16 individuals with Cantú syndrome examined. The ABCC9 protein is part of an ATP-dependent potassium (K(ATP)) channel that couples the metabolic state of a cell with its electrical activity. All mutations altered amino acids in or close to the transmembrane domains of ABCC9. Using electrophysiological measurements, we show that mutations in ABCC9 reduce the ATP-mediated potassium channel inhibition, resulting in channel opening. Moreover, similarities between the phenotype of individuals with Cantú syndrome and side effects from the K(ATP) channel agonist minoxidil indicate that the mutations in ABCC9 result in channel opening. Given the availability of ABCC9 antagonists, our findings may have direct implications for the treatment of individuals with Cantú syndrome.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/genética , Cardiomegalia/genética , Enfermedades Genéticas Ligadas al Cromosoma X/genética , Hipertricosis/genética , Mutación Missense , Osteocondrodisplasias/genética , Canales de Potasio de Rectificación Interna/genética , Receptores de Droga/genética , Adulto , Línea Celular Transformada , Niño , Preescolar , Exoma , Femenino , Predisposición Genética a la Enfermedad , Células HEK293 , Humanos , Lactante , Recién Nacido , Canales KATP/genética , Masculino , Estructura Terciaria de Proteína/genética , Receptores de Sulfonilureas , Adulto Joven
12.
Kidney Int ; 75(4): 415-9, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19037252

RESUMEN

Diffuse mesangial sclerosis occurs as an isolated abnormality or as a part of a syndrome. Recently, mutations in phospholipase C epsilon 1 (PLCE1) were found to cause a nonsyndromic, autosomal recessive form of this disease. Here we describe three children from one consanguineous kindred of Pakistani origin with diffuse mesangial sclerosis who presented with congenital or infantile nephrotic syndrome. Homozygous mutations in PLCE1 (also known as KIAA1516, PLCE, or NPHS3) were identified following genome-wide mapping of single-nucleotide polymorphisms. All affected children were homozygous for a four-basepair deletion in exon 3, which created a premature translational stop codon. Analysis of the asymptomatic father of two of the children revealed that he was also homozygous for the same mutation. We conclude this nonpenetrance may be due to compensatory mutations at a second locus and that mutation within PLCE1 is not always sufficient to cause diffuse mesangial sclerosis.


Asunto(s)
Mesangio Glomerular/patología , Mutación , Fosfoinositido Fosfolipasa C/genética , Esclerosis/etiología , Salud de la Familia , Homocigoto , Humanos , Pakistán , Linaje , Penetrancia , Esclerosis/congénito , Esclerosis/patología
13.
Am J Med Genet A ; 143A(18): 2172-7, 2007 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-17702006

RESUMEN

Zellweger syndrome (ZS) is an autosomal recessive peroxisomal disorder that results from mutations in one of the peroxisome biogenesis (PEX) genes. This is the first patient reported with uniparental disomy (UPD) resulting in ZS, in this case maternal isodisomy of chromosome 1 involving reduction to homoallelism of a frameshift mutation within PEX 10. Other reported cases of UPD1, and evidence for the imprinting of genes on chromosome 1, are reviewed. The molecular findings in this patient have important implications for molecular testing and genetic counseling in ZS.


Asunto(s)
Cromosomas Humanos Par 1 , Impresión Genómica , Síndrome de Zellweger/genética , Femenino , Humanos , Recién Nacido , Peroxinas , Receptores Citoplasmáticos y Nucleares/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA