Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Med Sci Educ ; 33(2): 331-332, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36846081

RESUMEN

In medical education, virtual patients increase the realism of learning in a safe environment. We added an integrated learning event using a virtual patient to integrate patient history taking into a preclinical basic science course. Herein, we describe the process and our overall satisfaction with the virtual patient encounter.

2.
mBio ; 13(2): e0017522, 2022 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-35404121

RESUMEN

Human norovirus (HNoV) is a global health and socioeconomic burden, estimated to infect every individual at least five times during their lifetime. The underlying mechanism for the potential lack of long-term immune protection from HNoV infections is not understood and prompted us to investigate HNoV susceptibility of primary human B cells and its functional impact. Primary B cells isolated from whole blood were infected with HNoV-positive stool samples and harvested at 3 days postinfection (dpi) to assess the viral RNA yield by reverse transcriptase quantitative PCR (RT-qPCR). A 3- to 18-fold increase in the HNoV RNA yield was observed in 50 to 60% of donors. Infection was further confirmed in B cells derived from splenic and lymph node biopsy specimens. Next, we characterized infection of whole-blood-derived B cells by flow cytometry in specific functional B cell subsets (naive CD27- IgD+, memory-switched CD27+ IgD-, memory-unswitched CD27+ IgD+, and double-negative CD27- IgD- cells). While the susceptibilities of the subsets were similar, changes in the B cell subset distribution upon infection were observed, which were also noted after treatment with HNoV virus-like particles and the predicted recombinant NS1 protein. Importantly, primary B cell stimulation with the predicted recombinant NS1 protein triggered B cell activation and induced metabolic changes. These data demonstrate that primary B cells are susceptible to HNoV infection and suggest that the NS1 protein can alter B cell activation and metabolism in vitro, which could have implications for viral pathogenesis and immune responses in vivo. IMPORTANCE Human norovirus (HNoV) is the most prevalent causative agent of gastroenteritis worldwide. Infection results in a self-limiting disease that can become chronic and severe in the immunocompromised, the elderly, and infants. There are currently no approved therapeutic and preventative strategies to limit the health and socioeconomic burdens associated with HNoV infections. Moreover, HNoV does not elicit lifelong immunity as repeat infections are common, presenting a challenge for vaccine development. Given the importance of B cells for humoral immunity, we investigated the susceptibility and impact of HNoV infection on human B cells. We found that HNoV replicates in human primary B cells derived from blood, spleen, and lymph node specimens, while the nonstructural protein NS1 can activate B cells. Because of the secreted nature of NS1, we put forward the hypothesis that HNoV infection can modulate bystander B cell function with potential impacts on systemic immune responses.


Asunto(s)
Infecciones por Caliciviridae , Gastroenteritis , Norovirus , Anciano , Humanos , Inmunoglobulina D , Activación de Linfocitos , Norovirus/fisiología
3.
J Immunol ; 204(1): 112-121, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31818981

RESUMEN

CMV is an obligate and persistent intracellular pathogen that continually drives the production of highly differentiated virus-specific CD8+ T cells in an Ag-dependent manner, a phenomenon known as memory inflation. Extensive proliferation is required to generate and maintain inflationary CD8+ T cell populations, which are counterintuitively short-lived and typically exposed to limited amounts of Ag during the chronic phase of infection. An apparent discrepancy therefore exists between the magnitude of expansion and the requirement for ongoing immunogenic stimulation. To address this issue, we explored the clonal dynamics of memory inflation. First, we tracked congenically marked OT-I cell populations in recipient mice infected with murine CMV (MCMV) expressing the cognate Ag OVA. Irrespective of numerical dominance, stochastic expansions were observed in each population, such that dominant and subdominant OT-I cells were maintained at stable frequencies over time. Second, we characterized endogenous CD8+ T cell populations specific for two classic inflationary epitopes, M38 and IE3. Multiple clonotypes simultaneously underwent Ag-driven proliferation during latent infection with MCMV. In addition, the corresponding CD8+ T cell repertoires were stable over time and dominated by persistent clonotypes, many of which also occurred in more than one mouse. Collectively, these data suggest that stochastic encounters with Ag occur frequently enough to maintain oligoclonal populations of inflationary CD8+ T cells, despite intrinsic constraints on epitope display at individual sites of infection with MCMV.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Selección Clonal Mediada por Antígenos/inmunología , Memoria Inmunológica/inmunología , Muromegalovirus/inmunología , Animales , Proliferación Celular , Epítopos/inmunología , Infecciones por Herpesviridae/inmunología , Infecciones por Herpesviridae/virología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Ovalbúmina/inmunología
4.
Nat Microbiol ; 5(1): 84-92, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31768030

RESUMEN

Evidence has accumulated to demonstrate that the intestinal microbiota enhances mammalian enteric virus infections1. For example, we and others previously reported that commensal bacteria stimulate acute and persistent murine norovirus infections2-4. However, in apparent contradiction of these results, the virulence of murine norovirus infection was unaffected by antibiotic treatment. This prompted us to perform a detailed investigation of murine norovirus infection in microbially deplete mice, revealing a more complex picture in which commensal bacteria inhibit viral infection of the proximal small intestine while simultaneously stimulating the infection of distal regions of the gut. Thus, commensal bacteria can regulate viral regionalization along the intestinal tract. We further show that the mechanism underlying bacteria-dependent inhibition of norovirus infection in the proximal gut involves bile acid priming of type III interferon. Finally, the regional effects of the microbiota on norovirus infection may result from distinct regional expression profiles of key bile acid receptors that regulate the type III interferon response. Overall, these findings reveal that the biotransformation of host metabolites by the intestinal microbiota directly and regionally impacts infection by a pathogenic enteric virus.


Asunto(s)
Ácidos y Sales Biliares/metabolismo , Infecciones por Caliciviridae/inmunología , Microbioma Gastrointestinal , Interferones/metabolismo , Intestinos/inmunología , Animales , Infecciones por Caliciviridae/microbiología , Línea Celular , Interacciones Huésped-Patógeno , Humanos , Intestinos/microbiología , Intestinos/virología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Norovirus/crecimiento & desarrollo , Norovirus/patogenicidad , Especificidad de Órganos , Interferón lambda
5.
J Virol ; 92(23)2018 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-30232191

RESUMEN

Noroviruses are enteric pathogens causing significant morbidity, mortality, and economic losses worldwide. Secretory immunoglobulins (sIg) are a first line of mucosal defense against enteric pathogens. They are secreted into the intestinal lumen via the polymeric immunoglobulin receptor (pIgR), where they bind to antigens. However, whether natural sIg protect against norovirus infection remains unknown. To determine if natural sIg alter murine norovirus (MNV) pathogenesis, we infected pIgR knockout (KO) mice, which lack sIg in mucosal secretions. Acute MNV infection was significantly reduced in pIgR KO mice compared to controls, despite increased MNV target cells in the Peyer's patch. Natural sIg did not alter MNV binding to the follicle-associated epithelium (FAE) or crossing of the FAE into the lymphoid follicle. Instead, naive pIgR KO mice had enhanced levels of the antiviral inflammatory molecules interferon gamma (IFN-γ) and inducible nitric oxide synthase (iNOS) in the ileum compared to controls. Strikingly, depletion of the intestinal microbiota in pIgR KO and control mice resulted in comparable IFN-γ and iNOS levels, as well as MNV infectious titers. IFN-γ treatment of wild-type (WT) mice and neutralization of IFN-γ in pIgR KO mice modulated MNV titers, implicating the antiviral cytokine in the phenotype. Reduced gastrointestinal infection in pIgR KO mice was also observed with another enteric virus, reovirus. Collectively, our findings suggest that natural sIg are not protective during enteric virus infection, but rather, that sIg promote enteric viral infection through alterations in microbial immune responses.IMPORTANCE Enteric virus, such as norovirus, infections cause significant morbidity and mortality worldwide. However, direct antiviral infection prevention strategies are limited. Blocking host entry and initiation of infection provides an established avenue for intervention. Here, we investigated the role of the polymeric immunoglobulin receptor (pIgR)-secretory immunoglobulin (sIg) cycle during enteric virus infections. The innate immune functions of sIg (agglutination, immune exclusion, neutralization, and expulsion) were not required during control of acute murine norovirus (MNV) infection. Instead, lack of pIgR resulted in increased IFN-γ levels, which contributed to reduced MNV titers. Another enteric virus, reovirus, also showed decreased infection in pIgR KO mice. Collectively, our data point to a model in which sIg-mediated microbial sensing promotes norovirus and reovirus infection. These data provide the first evidence of the proviral role of natural sIg during enteric virus infections and provide another example of how intestinal bacterial communities indirectly influence MNV pathogenesis.


Asunto(s)
Infecciones por Caliciviridae/virología , Tracto Gastrointestinal/virología , Inmunoglobulinas/metabolismo , Receptores de Inmunoglobulina Polimérica/fisiología , Infecciones por Reoviridae/virología , Replicación Viral/inmunología , Animales , Infecciones por Caliciviridae/inmunología , Infecciones por Caliciviridae/metabolismo , Tracto Gastrointestinal/inmunología , Interferón gamma/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Óxido Nítrico Sintasa de Tipo II/metabolismo , Norovirus/inmunología , Reoviridae/inmunología , Infecciones por Reoviridae/inmunología , Infecciones por Reoviridae/metabolismo
6.
Viruses ; 10(5)2018 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-29751532

RESUMEN

The gastrointestinal tract houses millions of microbes, and thus has evolved several host defense mechanisms to keep them at bay, and prevent their entry into the host. One such mucosal surface defense is the secretion of secretory immunoglobulins (SIg). Secretion of SIg depends on the polymeric immunoglobulin receptor (pIgR), which transports polymeric Ig (IgA or IgM) from the basolateral surface of the epithelium to the apical side. Upon reaching the luminal side, a portion of pIgR, called secretory component (SC) is cleaved off to release Ig, forming SIg. Through antigen-specific and non-specific binding, SIg can modulate microbial communities and pathogenic microbes via several mechanisms: agglutination and exclusion from the epithelial surface, neutralization, or via host immunity and complement activation. Given the crucial role of SIg as a microbial scavenger, some pathogens also evolved ways to modulate and utilize pIgR and SIg to facilitate infection. This review will cover the regulation of the pIgR/SIg cycle, mechanisms of SIg-mediated mucosal protection as well as pathogen utilization of SIg.


Asunto(s)
Inmunidad Mucosa , Inmunoglobulina A Secretora/inmunología , Inmunoglobulinas/inmunología , Receptores de Inmunoglobulina Polimérica/inmunología , Animales , Transporte Biológico , Tracto Gastrointestinal/inmunología , Humanos , Inmunoglobulina A/inmunología , Ratones
7.
Trends Mol Med ; 22(12): 1047-1059, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27887808

RESUMEN

Norovirus (NoV) infection is the leading cause of epidemic gastroenteritis globally, and can lead to detrimental chronic infection in immunocompromised hosts. Despite its prevalence as a cause of diarrheal illness, the study of human NoVs (HNoVs) has historically been limited by a paucity of models. The use of murine NoV (MNoV) to interrogate mechanisms of host control of viral infection has facilitated the exploration of different genetic mouse models, revealing roles for both innate and adaptive immunity in viral regulation. MNoV studies have also recently identified important interactions between the commensal microbiota and NoV with clear extensions to HNoVs. In this review, we discuss the most current understanding of how the host, the microbiome, and their interactions regulate NoV infections.


Asunto(s)
Infecciones por Caliciviridae/inmunología , Gastroenteritis/inmunología , Microbioma Gastrointestinal , Norovirus/inmunología , Inmunidad Adaptativa , Animales , Infecciones por Caliciviridae/microbiología , Infecciones por Caliciviridae/virología , Modelos Animales de Enfermedad , Gastroenteritis/microbiología , Gastroenteritis/virología , Tracto Gastrointestinal/inmunología , Tracto Gastrointestinal/microbiología , Tracto Gastrointestinal/virología , Humanos , Inmunidad Innata
8.
J Virol ; 90(3): 1499-506, 2016 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-26581993

RESUMEN

UNLABELLED: A critical early step in murine norovirus (MNV) pathogenesis is crossing the intestinal epithelial barrier to reach the target cells for replication, i.e., macrophages, dendritic cells, and B cells. Our previous work showed that MNV replication decreases in the intestines of mice conditionally depleted of microfold (M) cells. To define the importance of Peyer's patch (PP) M cells during MNV pathogenesis, we used a model of BALB/c mice deficient in recombination-activating gene 2 (Rag2) and the common gamma chain (γc) (Rag-γc(-/-)), which lack gut-associated lymphoid tissues (GALT), such as Peyer's patches, and mature GP2(+) M cells. Rag-γc(-/-) mice were infected intraperitoneally or perorally with MNV-1 or CR3 for 24 or 72 h. Although the intestinal laminae propriae of Rag-γc(-/-) mice have a higher frequency of certain MNV target cells (dendritic cells and macrophages) than those of wild-type mice and lack others (B cells), Rag-γc(-/-) and wild-type BALB/c mice showed relatively similar viral loads in the intestine following infection by the intraperitoneal route, which provides direct access to target cells. However, Rag-γc(-/-) mice were not productively infected with MNV by the oral route, in which virions must cross the intestinal epithelial barrier. These data are consistent with a model whereby PP M cells are the primary route by which MNV crosses the intestinal epithelia of BALB/c mice. IMPORTANCE: Noroviruses (NoVs) are prevalent pathogens that infect their hosts via the intestine. Identifying key factors during the initial stages of virus infection in the host may provide novel points of intervention. Microfold (M) cells, antigen-sampling cells in the intestine, were previously shown to provide a gateway for murine NoV (MNV) into the host, but the relative importance of this uptake pathway remained unknown. Here we show that the absence of gut-associated lymphoid tissues (GALT), such as Peyer's patches, which contain high numbers of mature M cells, renders BALB/c mice refractory to oral infection with MNV. These findings are consistent with the model that M cells represent the primary route by which MNV crosses the intestinal epithelial barrier and infects underlying immune cells during a productive infection.


Asunto(s)
Infecciones por Caliciviridae/inmunología , Infecciones por Caliciviridae/virología , Interacciones Huésped-Patógeno , Norovirus/fisiología , Ganglios Linfáticos Agregados/virología , Internalización del Virus , Animales , Modelos Animales de Enfermedad , Ratones Endogámicos BALB C , Ratones Noqueados
9.
Cell Rep ; 13(6): 1137-1148, 2015 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-26526996

RESUMEN

Cytomegalovirus (CMV) is a herpesvirus that persists for life and maintains extremely large numbers of T cells with select specificities in circulation. However, it is unknown how viral persistence impacts T cell populations in mucosal sites. We found that many murine (M)CMV-specific CD8s in mucosal tissues became resident memory T cells (TRM). These cells adopted an intraepithelial localization in the salivary gland that correlated with, but did not depend on, expression of the integrin CD103. MCMV-specific TRM cells formed early after infection, and spleen-localized cells had reduced capacities to become TRM at late times. Surprisingly, however, small numbers of new TRM cells were formed from the circulating pool throughout infection, favoring populations maintained at high levels in the blood and shifting the immunodominance within the TRM populations over time. These data show that mucosal TRM populations can be dynamically maintained by a persistent infection.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Infecciones por Herpesviridae/inmunología , Membrana Mucosa/citología , Animales , Antígenos CD/genética , Antígenos CD/metabolismo , Cadenas alfa de Integrinas/genética , Cadenas alfa de Integrinas/metabolismo , Ratones , Ratones Endogámicos C57BL , Membrana Mucosa/inmunología , Glándulas Salivales/citología , Glándulas Salivales/inmunología , Bazo/citología , Bazo/inmunología
10.
J Immunol ; 194(4): 1726-1736, 2015 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-25595792

RESUMEN

Reconstitution of CMV-specific immunity after transplant remains a primary clinical objective to prevent CMV disease, and adoptive immunotherapy of CMV-specific T cells can be an effective therapeutic approach. Because of viral persistence, most CMV-specific CD8(+) T cells become terminally differentiated effector phenotype CD8(+) T cells (TEFF). A minor subset retains a memory-like phenotype (memory phenotype CD8(+) T cells [TM]), but it is unknown whether these cells retain memory function or persist over time. Interestingly, recent studies suggest that CMV-specific CD8(+) T cells with different phenotypes have different abilities to reconstitute sustained immunity after transfer. The immunology of human CMV infections is reflected in the murine CMV (MCMV) model. We found that human CMV- and MCMV-specific T cells displayed shared genetic programs, validating the MCMV model for studies of CMV-specific T cells in vivo. The MCMV-specific TM population was stable over time and retained a proliferative capacity that was vastly superior to TEFF. Strikingly, after transfer, TM established sustained and diverse T cell populations even after multiple challenges. Although both TEFF and TM could protect Rag(-/-) mice, only TM persisted after transfer into immune replete, latently infected recipients and responded if recipient immunity was lost. Interestingly, transferred TM did not expand until recipient immunity was lost, supporting that competition limits the Ag stimulation of TM. Ultimately, these data show that CMV-specific TM retain memory function during MCMV infection and can re-establish CMV immunity when necessary. Thus, TM may be a critical component for consistent, long-term adoptive immunotherapy success.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Infecciones por Herpesviridae/inmunología , Memoria Inmunológica/inmunología , Subgrupos de Linfocitos T/inmunología , Traslado Adoptivo , Animales , Modelos Animales de Enfermedad , Humanos , Inmunoterapia Adoptiva/métodos , Ratones , Ratones Transgénicos , Muromegalovirus/inmunología , Análisis de Secuencia por Matrices de Oligonucleótidos
11.
PLoS Pathog ; 10(7): e1004233, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24992722

RESUMEN

Several low-grade persistent viral infections induce and sustain very large numbers of virus-specific effector T cells. This was first described as a response to cytomegalovirus (CMV), a herpesvirus that establishes a life-long persistent/latent infection, and sustains the largest known effector T cell populations in healthy people. These T cells remain functional and traffic systemically, which has led to the recent exploration of CMV as a persistent vaccine vector. However, the maintenance of this remarkable response is not understood. Current models propose that reservoirs of viral antigen and/or latently infected cells in lymph nodes stimulate T cell proliferation and effector differentiation, followed by migration of progeny to non-lymphoid tissues where they control CMV reactivation. We tested this model using murine CMV (MCMV), a natural mouse pathogen and homologue of human CMV (HCMV). While T cells within draining lymph nodes divided at a higher rate than cells elsewhere, antigen-dependent proliferation of MCMV-specific effector T cells was observed systemically. Strikingly, inhibition of T cell egress from lymph nodes failed to eliminate systemic T cell division, and did not prevent the maintenance of the inflationary populations. In fact, we found that the vast majority of inflationary cells, including most cells undergoing antigen-driven division, had not migrated into the parenchyma of non-lymphoid tissues but were instead exposed to the blood supply. Indeed, the immunodominance and effector phenotype of inflationary cells, both of which are primary hallmarks of memory inflation, were largely confined to blood-localized T cells. Together these results support a new model of MCMV-driven memory inflation in which most immune surveillance occurs in circulation, and in which most inflationary effector T cells are produced in response to viral antigen presented by cells that are accessible to the blood supply.


Asunto(s)
Antígenos Virales/inmunología , Proliferación Celular , Infecciones por Herpesviridae/inmunología , Inmunidad Celular , Memoria Inmunológica , Muromegalovirus/inmunología , Linfocitos T/inmunología , Animales , Movimiento Celular/inmunología , Infecciones por Herpesviridae/patología , Humanos , Ratones
12.
Eur J Immunol ; 43(5): 1252-63, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23404526

RESUMEN

Both human cytomegalovirus (HCMV) and murine cytomegalovirus (MCMV) establish persistent infections that induce the accumulation of virus-specific T cells over time in a process called memory inflation. It has been proposed that T cells expressing T-cell receptors (TCRs) with high affinity for HCMV-derived peptides are preferentially selected after acute HCMV infection. To test this in the murine model, small numbers of OT-I transgenic T cells, which express a TCR with high affinity for the SIINFEKL peptide, were transferred into congenic mice and recipients were challenged with recombinant MCMV expressing SIINFEKL. OT-I T cells were selectively enriched during the first 3 weeks of infection. Similarly, in the absence of OT-I T cells, the functional avidity of SIINFEKL-specific T cells increased from early to late times postinfection. However, even when exceedingly small numbers of OT-I T cells were transferred, their inflation limited the inflation of host-derived T cells specific for SIINFEKL. Importantly, subtle minor histocompatibility differences led to late rejection of the transferred OT-I T cells in some mice, which allowed host-derived T cells to inflate substantially. Thus, T cells with a high functional avidity are selected shortly after MCMV infection and continuously sustain their clonal dominance in a competitive manner.


Asunto(s)
Infecciones por Herpesviridae/inmunología , Epítopos Inmunodominantes/inmunología , Memoria Inmunológica , Muromegalovirus , Péptidos/inmunología , Linfocitos T/inmunología , Traslado Adoptivo , Animales , Rastreo Celular , Células Clonales , Infecciones por Herpesviridae/patología , Infecciones por Herpesviridae/virología , Epítopos Inmunodominantes/genética , Ratones , Ratones Transgénicos , Péptidos/genética , Receptores de Antígenos de Linfocitos T/genética , Receptores de Antígenos de Linfocitos T/inmunología , Linfocitos T/citología , Linfocitos T/trasplante , Factores de Tiempo
13.
Virology ; 392(2): 153-61, 2009 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-19647849

RESUMEN

Murine norovirus (MNV) is a recently discovered pathogen that has become a common contaminant of specific pathogen-free mouse colonies. MNV-1 induces a robust interferon-beta response and causes histopathology in some mouse strains, suggesting that it may impact other mouse models of infection. Despite many concerns about MNV-1 contamination, there is little information about its impact on immune responses to other infections. This study addresses whether MNV-1 infection has an effect on a model of murine cytomegalovirus (MCMV) infection. Exposure to MNV-1 resulted in a decreased CD8 T cell response to immunodominant MCMV epitopes in both BALB/c and C57BL/6 mice. However, MNV-1 did not impact MCMV titers in either mouse strain, nor did it stimulate reactivation of latent MCMV. These data suggest that while MNV-1 has a mild impact on the immune response to MCMV, it is not likely to affect most experimental outcomes in immunocompetent mice in the MCMV model.


Asunto(s)
Infecciones por Caliciviridae/inmunología , Infecciones por Citomegalovirus/virología , Muromegalovirus/inmunología , Norovirus/inmunología , Enfermedades de los Roedores/inmunología , Animales , Células 3T3 BALB , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/virología , Infecciones por Caliciviridae/veterinaria , Infecciones por Caliciviridae/virología , Infecciones por Citomegalovirus/inmunología , Infecciones por Citomegalovirus/veterinaria , Ensayo de Inmunoadsorción Enzimática , Femenino , Vivienda para Animales , Inmunidad Celular , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Enfermedades de los Roedores/virología , Organismos Libres de Patógenos Específicos , Ensayo de Placa Viral , Activación Viral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA