Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Hippocampus ; 34(5): 218-229, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38362938

RESUMEN

Brain-derived neurotrophic factor (Bdnf) plays a critical role in brain development, dendritic growth, synaptic plasticity, as well as learning and memory. The rodent Bdnf gene contains nine 5' non-coding exons (I-IXa), which are spliced to a common 3' coding exon (IX). Transcription of individual Bdnf variants, which all encode the same BDNF protein, is initiated at unique promoters upstream of each non-coding exon, enabling precise spatiotemporal and activity-dependent regulation of Bdnf expression. Although prior evidence suggests that Bdnf transcripts containing exon I (Bdnf I) or exon IV (Bdnf IV) are uniquely regulated by neuronal activity, the functional significance of different Bdnf transcript variants remains unclear. To investigate functional roles of activity-dependent Bdnf I and IV transcripts, we used a CRISPR activation system in which catalytically dead Cas9 fused to a transcriptional activator (VPR) is targeted to individual Bdnf promoters with single guide RNAs, resulting in transcript-specific Bdnf upregulation. Bdnf I upregulation is associated with gene expression changes linked to dendritic growth, while Bdnf IV upregulation is associated with genes that regulate protein catabolism. Upregulation of Bdnf I, but not Bdnf IV, increased mushroom spine density, volume, length, and head diameter, and also produced more complex dendritic arbors in cultured rat hippocampal neurons. In contrast, upregulation of Bdnf IV, but not Bdnf I, in the rat hippocampus attenuated contextual fear expression. Our data suggest that while Bdnf I and IV are both activity-dependent, BDNF produced from these promoters may serve unique cellular, synaptic, and behavioral functions.

2.
Elife ; 122023 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-37938195

RESUMEN

Neuronal and behavioral adaptations to novel stimuli are regulated by temporally dynamic waves of transcriptional activity, which shape neuronal function and guide enduring plasticity. Neuronal activation promotes expression of an immediate early gene (IEG) program comprised primarily of activity-dependent transcription factors, which are thought to regulate a second set of late response genes (LRGs). However, while the mechanisms governing IEG activation have been well studied, the molecular interplay between IEGs and LRGs remain poorly characterized. Here, we used transcriptomic and chromatin accessibility profiling to define activity-driven responses in rat striatal neurons. As expected, neuronal depolarization generated robust changes in gene expression, with early changes (1 hr) enriched for inducible transcription factors and later changes (4 hr) enriched for neuropeptides, synaptic proteins, and ion channels. Remarkably, while depolarization did not induce chromatin remodeling after 1 hr, we found broad increases in chromatin accessibility at thousands of sites in the genome at 4 hr after neuronal stimulation. These putative regulatory elements were found almost exclusively at non-coding regions of the genome, and harbored consensus motifs for numerous activity-dependent transcription factors such as AP-1. Furthermore, blocking protein synthesis prevented activity-dependent chromatin remodeling, suggesting that IEG proteins are required for this process. Targeted analysis of LRG loci identified a putative enhancer upstream of Pdyn (prodynorphin), a gene encoding an opioid neuropeptide implicated in motivated behavior and neuropsychiatric disease states. CRISPR-based functional assays demonstrated that this enhancer is both necessary and sufficient for Pdyn transcription. This regulatory element is also conserved at the human PDYN locus, where its activation is sufficient to drive PDYN transcription in human cells. These results suggest that IEGs participate in chromatin remodeling at enhancers and identify a conserved enhancer that may act as a therapeutic target for brain disorders involving dysregulation of Pdyn.


Asunto(s)
Ensamble y Desensamble de Cromatina , Secuencias Reguladoras de Ácidos Nucleicos , Animales , Humanos , Ratas , Cromatina , Biosíntesis de Proteínas , Factores de Transcripción/genética
3.
bioRxiv ; 2023 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-37333110

RESUMEN

Neuronal and behavioral adaptations to novel stimuli are regulated by temporally dynamic waves of transcriptional activity, which shape neuronal function and guide enduring plasticity. Neuronal activation promotes expression of an immediate early gene (IEG) program comprised primarily of activity-dependent transcription factors, which are thought to regulate a second set of late response genes (LRGs). However, while the mechanisms governing IEG activation have been well studied, the molecular interplay between IEGs and LRGs remain poorly characterized. Here, we used transcriptomic and chromatin accessibility profiling to define activity-driven responses in rat striatal neurons. As expected, neuronal depolarization generated robust changes in gene expression, with early changes (1 h) enriched for inducible transcription factors and later changes (4 h) enriched for neuropeptides, synaptic proteins, and ion channels. Remarkably, while depolarization did not induce chromatin remodeling after 1 h, we found broad increases in chromatin accessibility at thousands of sites in the genome at 4 h after neuronal stimulation. These putative regulatory elements were found almost exclusively at non-coding regions of the genome, and harbored consensus motifs for numerous activity-dependent transcription factors such as AP-1. Furthermore, blocking protein synthesis prevented activity-dependent chromatin remodeling, suggesting that IEG proteins are required for this process. Targeted analysis of LRG loci identified a putative enhancer upstream of Pdyn (prodynorphin), a gene encoding an opioid neuropeptide implicated in motivated behavior and neuropsychiatric disease states. CRISPR-based functional assays demonstrated that this enhancer is both necessary and sufficient for Pdyn transcription. This regulatory element is also conserved at the human PDYN locus, where its activation is sufficient to drive PDYN transcription in human cells. These results suggest that IEGs participate in chromatin remodeling at enhancers and identify a conserved enhancer that may act as a therapeutic target for brain disorders involving dysregulation of Pdyn.

4.
bioRxiv ; 2023 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-37066216

RESUMEN

Brain-derived neurotrophic factor (Bdnf) plays a critical role in brain development, dendritic growth, synaptic plasticity, as well as learning and memory. The rodent Bdnf gene contains nine 5' non-coding exons (I-IXa), which are spliced to a common 3' coding exon (IX). Transcription of individual Bdnf variants, which all encode the same BDNF protein, is initiated at unique promoters upstream of each non-coding exon, enabling precise spatiotemporal and activity-dependent regulation of Bdnf expression. Although prior evidence suggests that Bdnf transcripts containing exon I (Bdnf I) or exon IV (Bdnf IV) are uniquely regulated by neuronal activity, the functional significance of different Bdnf transcript variants remains unclear. To investigate functional roles of activity-dependent Bdnf I and IV transcripts, we used a CRISPR activation (CRISPRa) system in which catalytically-dead Cas9 (dCas9) fused to a transcriptional activator (VPR) is targeted to individual Bdnf promoters with single guide RNAs (sgRNAs), resulting in transcript-specific Bdnf upregulation. Bdnf I upregulation is associated with gene expression changes linked to dendritic growth, while Bdnf IV upregulation is associated with genes that regulate protein catabolism. Upregulation of Bdnf I, but not Bdnf IV, increased mushroom spine density, volume, length, and head diameter, and also produced more complex dendritic arbors in cultured rat hippocampal neurons. In contrast, upregulation of Bdnf IV, but not Bdnf I, in the rat hippocampus attenuated contextual fear expression. Our data suggest that while Bdnf I and IV are both activity-dependent, BDNF produced from these promoters may serve unique cellular, synaptic, and behavioral functions.

5.
J Neurosci ; 43(20): 3764-3785, 2023 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-37055180

RESUMEN

Proteomic studies using postmortem human brain tissue samples have yielded robust assessments of the aging and neurodegenerative disease(s) proteomes. While these analyses provide lists of molecular alterations in human conditions, like Alzheimer's disease (AD), identifying individual proteins that affect biological processes remains a challenge. To complicate matters, protein targets may be highly understudied and have limited information on their function. To address these hurdles, we sought to establish a blueprint to aid selection and functional validation of targets from proteomic datasets. A cross-platform pipeline was engineered to focus on synaptic processes in the entorhinal cortex (EC) of human patients, including controls, preclinical AD, and AD cases. Label-free quantification mass spectrometry (MS) data (n = 2260 proteins) was generated on synaptosome fractionated tissue from Brodmann area 28 (BA28; n = 58 samples). In parallel, dendritic spine density and morphology was measured in the same individuals. Weighted gene co-expression network analysis was used to construct a network of protein co-expression modules that were correlated with dendritic spine metrics. Module-trait correlations were used to guide unbiased selection of Twinfilin-2 (TWF2), which was the top hub protein of a module that positively correlated with thin spine length. Using CRISPR-dCas9 activation strategies, we demonstrated that boosting endogenous TWF2 protein levels in primary hippocampal neurons increased thin spine length, thus providing experimental validation for the human network analysis. Collectively, this study describes alterations in dendritic spine density and morphology as well as synaptic proteins and phosphorylated tau from the entorhinal cortex of preclinical and advanced stage AD patients.SIGNIFICANCE STATEMENT Proteomic studies can yield vast lists of molecules that are altered under various experimental or disease conditions. Here, we provide a blueprint to facilitate mechanistic validation of protein targets from human brain proteomic datasets. We conducted a proteomic analysis of human entorhinal cortex (EC) samples spanning cognitively normal and Alzheimer's disease (AD) cases with a comparison of dendritic spine morphology in the same samples. Network integration of proteomics with dendritic spine measurements allowed for unbiased discovery of Twinfilin-2 (TWF2) as a regulator of dendritic spine length. A proof-of-concept experiment in cultured neurons demonstrated that altering Twinfilin-2 protein level induced corresponding changes in dendritic spine length, thus providing experimental validation for the computational framework.


Asunto(s)
Enfermedad de Alzheimer , Enfermedades Neurodegenerativas , Humanos , Corteza Entorrinal/metabolismo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Espinas Dendríticas/metabolismo , Proteómica
6.
Mol Cell Neurosci ; 125: 103849, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36965548

RESUMEN

Drugs of abuse increase extracellular concentrations of dopamine in the nucleus accumbens (NAc), resulting in transcriptional alterations that drive long-lasting cellular and behavioral adaptations. While decades of research have focused on the transcriptional mechanisms by which drugs of abuse influence neuronal physiology and function, few studies have comprehensively defined NAc cell type heterogeneity in transcriptional responses to drugs of abuse. Here, we used single nucleus RNA-seq (snRNA-seq) to characterize the transcriptome of over 39,000 NAc cells from male and female adult Sprague-Dawley rats following acute or repeated cocaine experience. This dataset identified 16 transcriptionally distinct cell populations, including two populations of medium spiny neurons (MSNs) that express the Drd1 dopamine receptor (D1-MSNs). Critically, while both populations expressed classic marker genes of D1-MSNs, only one population exhibited a robust transcriptional response to cocaine. Validation of population-selective transcripts using RNA in situ hybridization revealed distinct spatial compartmentalization of these D1-MSN populations within the NAc. Finally, analysis of published NAc snRNA-seq datasets from non-human primates and humans demonstrated conservation of MSN subtypes across rat and higher order mammals, and further highlighted cell type-specific transcriptional differences across the NAc and broader striatum. These results highlight the utility in using snRNA-seq to characterize both cell type heterogeneity and cell type-specific responses to cocaine and provides a useful resource for cross-species comparisons of NAc cell composition.


Asunto(s)
Cocaína , Masculino , Femenino , Ratas , Animales , Ratones , Cocaína/farmacología , Neuronas Espinosas Medianas , Receptores de Dopamina D2/genética , Receptores de Dopamina D2/metabolismo , Ratas Sprague-Dawley , Neuronas/metabolismo , Receptores de Dopamina D1/genética , Receptores de Dopamina D1/metabolismo , Núcleo Accumbens/metabolismo , Ratones Endogámicos C57BL , Ratones Transgénicos , Mamíferos
7.
bioRxiv ; 2023 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-36711527

RESUMEN

Drugs of abuse increase extracellular concentrations of dopamine in the nucleus accumbens (NAc), resulting in transcriptional alterations that drive long-lasting cellular and behavioral adaptations. While decades of research have focused on the transcriptional mechanisms by which drugs of abuse influence neuronal physiology and function, few studies have comprehensively defined NAc cell type heterogeneity in transcriptional responses to drugs of abuse. Here, we used single nucleus RNA-seq (snRNA-seq) to characterize the transcriptome of over 39,000 NAc cells from male and female adult Sprague-Dawley rats following acute or repeated cocaine experience. This dataset identified 16 transcriptionally distinct cell populations, including two populations of medium spiny neurons (MSNs) that express the Drd1 dopamine receptor (D1-MSNs). Critically, while both populations expressed classic marker genes of D1-MSNs, only one population exhibited a robust transcriptional response to cocaine. Validation of population-selective transcripts using RNA in situ hybridization revealed distinct spatial compartmentalization of these D1-MSN populations within the NAc. Finally, analysis of published NAc snRNA-seq datasets from non-human primates and humans demonstrated conservation of MSN subtypes across rat and higher order mammals, and further highlighted cell type-specific transcriptional differences across the NAc and broader striatum. These results highlight the utility in using snRNA-seq to characterize both cell type heterogeneity and cell type-specific responses to cocaine and provides a useful resource for cross-species comparisons of NAc cell composition.

8.
Cell Rep ; 39(1): 110616, 2022 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-35385745

RESUMEN

The ventral tegmental area (VTA) is a complex brain region that is essential for reward function and frequently implicated in neuropsychiatric disease. While decades of research on VTA function have focused on dopamine neurons, recent evidence has identified critical roles for GABAergic and glutamatergic neurons in reward processes. Additionally, although subsets of VTA neurons express genes involved in the synthesis and transport of multiple neurotransmitters, characterization of these combinatorial populations has largely relied on low-throughput methods. To comprehensively define the molecular architecture of the VTA, we performed single-nucleus RNA sequencing on 21,600 cells from the rat VTA. Analysis of neuronal subclusters identifies selective markers for dopamine and combinatorial neurons, reveals expression profiles for receptors targeted by drugs of abuse, and demonstrates population-specific enrichment of gene sets linked to brain disorders. These results highlight the heterogeneity of the VTA and provide a resource for further exploration of VTA gene expression.


Asunto(s)
Neuronas Dopaminérgicas , Área Tegmental Ventral , Animales , Dopamina/metabolismo , Neuronas Dopaminérgicas/fisiología , Neurotransmisores/metabolismo , Ratas , Recompensa , Área Tegmental Ventral/metabolismo
10.
eNeuro ; 8(4)2021.
Artículo en Inglés | MEDLINE | ID: mdl-34321217

RESUMEN

Site-specific genetic and epigenetic targeting of distinct cell populations is a central goal in molecular neuroscience and is crucial to understand the gene regulatory mechanisms that underlie complex phenotypes and behaviors. While recent technological advances have enabled unprecedented control over gene expression, many of these approaches are focused on selected model organisms and/or require labor-intensive customization for different applications. The simplicity and modularity of clustered regularly interspaced short palindromic repeats (CRISPR)-based systems have transformed genome editing and expanded the gene regulatory toolbox. However, there are few available tools for cell-selective CRISPR regulation in neurons. We designed, validated, and optimized CRISPR activation (CRISPRa) and CRISPR interference (CRISPRi) systems for Cre recombinase-dependent gene regulation. Unexpectedly, CRISPRa systems based on a traditional double-floxed inverted open reading frame (DIO) strategy exhibited leaky target gene induction even without Cre. Therefore, we developed an intron-containing Cre-dependent CRISPRa system (SVI-DIO-dCas9-VPR) that alleviated leaky gene induction and outperformed the traditional DIO system at endogenous genes in HEK293T cells and rat primary neuron cultures. Using gene-specific CRISPR sgRNAs, we demonstrate that SVI-DIO-dCas9-VPR can activate numerous rat or human genes (GRM2, Tent5b, Fos, Sstr2, and Gadd45b) in a Cre-specific manner. To illustrate the versatility of this tool, we created a parallel CRISPRi construct that successfully inhibited expression from a luciferase reporter in HEK293T cells only in the presence of Cre. These results provide a robust framework for Cre-dependent CRISPR-dCas9 approaches across different model systems, and enable cell-specific targeting when combined with common Cre driver lines or Cre delivery via viral vectors.


Asunto(s)
Sistemas CRISPR-Cas , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Animales , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Regulación de la Expresión Génica , Células HEK293 , Humanos , Integrasas , Neuronas , Ratas
11.
Sci Adv ; 6(26): eaba4221, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32637607

RESUMEN

Drugs of abuse elevate dopamine levels in the nucleus accumbens (NAc) and alter transcriptional programs believed to promote long-lasting synaptic and behavioral adaptations. Here, we leveraged single-nucleus RNA-sequencing to generate a comprehensive molecular atlas of cell subtypes in the NAc, defining both sex-specific and cell type-specific responses to acute cocaine experience in a rat model system. Using this transcriptional map, we identified an immediate early gene expression program that is up-regulated following cocaine experience in vivo and dopamine receptor activation in vitro. Multiplexed induction of this gene program with a large-scale CRISPR-dCas9 activation strategy initiated a secondary synapse-centric transcriptional profile, altered striatal physiology in vitro, and enhanced cocaine sensitization in vivo. Together, these results define the transcriptional response to cocaine with cellular precision and demonstrate that drug-responsive gene programs can potentiate both physiological and behavioral adaptations to drugs of abuse.


Asunto(s)
Cocaína , Animales , Cocaína/farmacología , Dopamina/metabolismo , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Núcleo Accumbens/metabolismo , Ratas , Transcriptoma
12.
eNeuro ; 7(1)2020.
Artículo en Inglés | MEDLINE | ID: mdl-31879366

RESUMEN

Blue wavelength light is used as an optical actuator in numerous optogenetic technologies employed in neuronal systems. However, the potential side effects of blue light in neurons has not been thoroughly explored, and recent reports suggest that neuronal exposure to blue light can induce transcriptional alterations in vitro and in vivo Here, we examined the effects of blue wavelength light in cultured primary rat cortical cells. Exposure to blue light (470 nm) resulted in upregulation of several immediate early genes (IEGs) traditionally used as markers of neuronal activity, including Fos and Fosb, but did not alter the expression of circadian clock genes Bmal1, Cry1, Cry2, Clock, or Per2 IEG expression was increased following 4 h of 5% duty cycle light exposure, and IEG induction was not dependent on light pulse width. Elevated levels of blue light exposure induced a loss of cell viability in vitro, suggestive of overt phototoxicity. Induction of IEGs by blue light was maintained in cortical cultures treated with AraC to block glial proliferation, indicating that induction occurred selectively in postmitotic neurons. Importantly, changes in gene expression induced by blue wavelength light were prevented when cultures were maintained in a photoinert media supplemented with a photostable neuronal supplement instead of commonly utilized neuronal culture media and supplements. Together, these findings suggest that light-induced gene expression alterations observed in vitro stem from a phototoxic interaction between commonly used media and neurons, and offer a solution to prevent this toxicity when using photoactivatable technology in vitro.


Asunto(s)
Luz , Neuronas , Animales , Ritmo Circadiano , Medios de Cultivo , Expresión Génica , Optogenética , Ratas
13.
Neurobiol Dis ; 132: 104591, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31470104

RESUMEN

Modifications to DNA and histone proteins serve a critical regulatory role in the developing and adult brain, and over a decade of research has established the importance of these "epigenetic" modifications in a wide variety of brain functions across the lifespan. Epigenetic patterns orchestrate gene expression programs that establish the phenotypic diversity of various cellular classes in the central nervous system, play a key role in experience-dependent gene regulation in the adult brain, and are commonly implicated in neurodevelopmental, psychiatric, and neurodegenerative disease states. In addition to these established roles, emerging evidence indicates that epigenetic information can potentially be transmitted to offspring, giving rise to inter- and trans-generational epigenetic inheritance phenotypes. However, our understanding of the cellular events that participate in this information transfer is incomplete, and the ability of this transfer to overcome complete epigenetic reprogramming during embryonic development is highly controversial. This review explores the existing literature on multigenerational epigenetic mechanisms in the central nervous system. First, we focus on the cellular mechanisms that may perpetuate or counteract this type of information transfer, and consider how epigenetic modification in germline and somatic cells regulate important aspects of cellular and organismal development. Next, we review the potential phenotypes resulting from ancestral experiences that impact gene regulatory modifications, including how these changes may give rise to unique metabolic phenotypes. Finally, we discuss several caveats and technical limitations that influence multigenerational epigenetic effects. We argue that studies reporting multigenerational epigenetic changes impacting the central nervous system must be interpreted with caution, and provide suggestions for how epigenetic information transfer can be mechanistically disentangled from genetic and environmental influences on brain function.


Asunto(s)
Encéfalo , Epigénesis Genética , Regulación de la Expresión Génica , Neurogénesis , Animales , Humanos
14.
Front Behav Neurosci ; 13: 168, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31417375

RESUMEN

Women are more susceptible to developing cocaine dependence than men, but paradoxically, are more responsive to treatment. The potent estrogen, 17ß-estradiol (E2), mediates these effects by augmenting cocaine seeking but also promoting extinction of cocaine seeking through E2's memory-enhancing functions. Although we have previously shown that E2 facilitates extinction, the neuroanatomical locus of action and underlying mechanisms are unknown. Here we demonstrate that E2 infused directly into the infralimbic-medial prefrontal cortex (IL-mPFC), a region critical for extinction consolidation, enhances extinction of cocaine seeking in ovariectomized (OVX) female rats. Using patch-clamp electrophysiology, we show that E2 may facilitate extinction by potentiating intrinsic excitability of IL-mPFC neurons. Because the mnemonic effects of E2 are known to be regulated by brain-derived neurotrophic factor (BDNF) and its receptor, tropomyosin-related kinase B (TrkB), we examined whether BDNF/TrkB signaling was necessary for E2-induced enhancement of excitability and extinction. We found that E2-mediated increases in excitability of IL-mPFC neurons were abolished by Trk receptor blockade. Moreover, blockade of TrkB signaling impaired E2-facilitated extinction of cocaine seeking in OVX female rats. Thus, E2 enhances IL-mPFC neuronal excitability in a TrkB-dependent manner to support extinction of cocaine seeking. Our findings suggest that pharmacological enhancement of E2 or BDNF/TrkB signaling during extinction-based therapies would improve therapeutic outcome in cocaine-addicted women.

15.
eNeuro ; 6(2)2019.
Artículo en Inglés | MEDLINE | ID: mdl-31016230

RESUMEN

The importance of the dorsal hippocampus (DH) in mediating the memory-enhancing effects of the sex-steroid hormone 17ß-estradiol (E2) is well established. However, estrogen receptors (ERs) are highly expressed in other brain regions that support memory formation, including the medial prefrontal cortex (mPFC). The mPFC and DH interact to mediate the formation of several types of memory, and behavioral tasks that recruit the mPFC are enhanced by systemic E2 administration, making this region a prime candidate for investigating circuit-level questions regarding the estrogenic regulation of memory. Further, infusion of E2 directly into the DH increases dendritic spine density in both the DH and mPFC, and this effect depends upon rapid activation of cell-signaling pathways in the DH, demonstrating a previously unexplored interaction between the DH and mPFC that led us to question the role of the mPFC in object memory consolidation and the necessity of DH-mPFC interactions in the memory-enhancing effects of E2. Here, we found that infusion of E2 directly into the mPFC of ovariectomized mice increased mPFC apical spine density and facilitated object recognition and spatial memory consolidation, demonstrating that E2 in the mPFC increases spinogenesis and enhances on memory consolidation. Next, chemogenetic suppression of the mPFC blocked the beneficial effects of DH-infused E2 on memory consolidation, indicating that systems-level DH-mPFC interactions are necessary for the memory-enhancing effects of E2. Together, these studies provide evidence that E2 in the mPFC mediates memory formation, and reveal that the DH and mPFC act in concert to support the memory-enhancing effects of E2 in female mice.


Asunto(s)
Espinas Dendríticas/efectos de los fármacos , Estradiol/farmacología , Estrógenos/farmacología , Hipocampo/efectos de los fármacos , Consolidación de la Memoria/efectos de los fármacos , Nootrópicos/farmacología , Corteza Prefrontal/efectos de los fármacos , Reconocimiento en Psicología/efectos de los fármacos , Memoria Espacial/efectos de los fármacos , Animales , Estradiol/administración & dosificación , Estrógenos/administración & dosificación , Femenino , Ratones , Ratones Endogámicos C57BL , Nootrópicos/administración & dosificación , Ovariectomía
16.
eNeuro ; 6(1)2019.
Artículo en Inglés | MEDLINE | ID: mdl-30863790

RESUMEN

CRISPR-based technology has provided new avenues to interrogate gene function, but difficulties in transgene expression in post-mitotic neurons has delayed incorporation of these tools in the central nervous system (CNS). Here, we demonstrate a highly efficient, neuron-optimized dual lentiviral CRISPR-based transcriptional activation (CRISPRa) system capable of robust, modular, and tunable gene induction and multiplexed gene regulation across several primary rodent neuron culture systems. CRISPRa targeting unique promoters in the complex multi-transcript gene brain-derived neurotrophic factor (Bdnf) revealed both transcript- and genome-level selectivity of this approach, in addition to highlighting downstream transcriptional and physiological consequences of Bdnf regulation. Finally, we illustrate that CRISPRa is highly efficient in vivo, resulting in increased protein levels of a target gene in diverse brain structures. Taken together, these results demonstrate that CRISPRa is an efficient and selective method to study gene expression programs in brain health and disease.


Asunto(s)
Sistemas CRISPR-Cas , Regulación de la Expresión Génica , Técnicas Genéticas , Neuronas/metabolismo , Animales , Encéfalo/citología , Encéfalo/metabolismo , Factor Neurotrófico Derivado del Encéfalo/genética , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Moléculas de Adhesión Celular Neuronal/metabolismo , Línea Celular Tumoral , Proteínas de la Matriz Extracelular/metabolismo , Masculino , Proteínas del Tejido Nervioso/metabolismo , Neuronas/citología , Cultivo Primario de Células , Distribución Aleatoria , Ratas Sprague-Dawley , Proteína Reelina , Serina Endopeptidasas/metabolismo , Transcripción Genética , Transcriptoma
17.
Neurobiol Learn Mem ; 156: 103-116, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30408525

RESUMEN

The dorsal hippocampus (DH) and medial prefrontal cortex (mPFC) are brain regions essential for processing and storing episodic memory. In rodents, the DH has a well-established role in supporting the consolidation of episodic-like memory in tasks such as object recognition and object placement. However, the role of the mPFC in the consolidation of episodic-like memory tasks remains controversial. Therefore, the present study examined involvement of the DH and mPFC, alone and in combination, in object and spatial recognition memory consolidation in ovariectomized female mice. To this end, we utilized two types of inhibitory Designer Receptors Exclusively Activated by Designer Drugs (DREADDs) to inactivate the DH alone, the mPFC alone, or both brain regions concurrently immediately after object training to assess the role of each region in the consolidation of object recognition and spatial memories. Our results using single and multiplexed DREADDS suggest that excitatory activity in the DH and mPFC, alone or in combination, is required for the successful consolidation of object recognition and spatial memories. Together, these studies provide critical insight into how the DH and mPFC work in concert to facilitate memory consolidation in female mice.


Asunto(s)
Técnicas Genéticas , Hipocampo/fisiología , Consolidación de la Memoria/fisiología , Memoria Episódica , Corteza Prefrontal/fisiología , Reconocimiento en Psicología/fisiología , Memoria Espacial/fisiología , Animales , Conducta Animal/fisiología , Femenino , Ratones , Ratones Endogámicos C57BL
18.
Physiol Behav ; 187: 57-66, 2018 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-28755863

RESUMEN

The potent estrogen 17ß-estradiol (E2) has long been known to regulate the hippocampus and hippocampal-dependent memories in females, and research from the past decade has begun to shed light on the molecular mechanisms through which E2 mediates memory formation in females. Although E2 can also regulate hippocampal function in males, relatively little is known about how E2 influences memory formation in males, or whether sex differences in underlying mechanisms exist. This review, based on a talk given in April 2017 at the American University symposium entitled, "Sex Differences: From Neuroscience to the Clinic and Beyond", first provides an overview of the molecular mechanisms in the dorsal hippocampus through which E2 enhances memory consolidation in ovariectomized female mice. Next, newer research is described demonstrating key roles for the prefrontal cortex and de novo hippocampal E2 synthesis to the memory-enhancing effects of E2 in females. The review then discusses the effects of de novo and exogenous E2 on hippocampal memory consolidation in both sexes, and putative sex differences in the underlying molecular mechanisms through which E2 enhances memory formation. The review concludes by discussing the importance and implications of sex differences in the molecular mechanisms underlying E2-induced memory consolidation for human health.


Asunto(s)
Estrógenos/farmacología , Hipocampo/fisiología , Consolidación de la Memoria/efectos de los fármacos , Ovario/fisiología , Caracteres Sexuales , Animales , Aromatasa/farmacología , Relación Dosis-Respuesta a Droga , Estradiol/metabolismo , Femenino , Hipocampo/efectos de los fármacos , Humanos , Masculino , Ovario/efectos de los fármacos
19.
Neuropsychopharmacology ; 43(4): 781-790, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-28825421

RESUMEN

Clinical observations imply that female cocaine addicts experience enhanced relapse vulnerability compared with males, an effect tied to elevated estrogen phases of the ovarian hormone cycle. Although estrogens can enhance drug-seeking behavior, they do not directly induce reinstatement on their own. To model this phenomenon, we tested whether an estrogen could augment drug-seeking behavior in response to an ordinarily subthreshold reinstatement trigger. Following cocaine self-administration and extinction, female rats were ovariectomized to isolate estrogen effects on reinstatement. Although neither peak proestrus levels of the primary estrogen 17ß-estradiol (E2; 10 µg/kg, i.p., 1-h pretreatment) nor a subthreshold cocaine dose (1.25 mg/kg, i.p.) alone were sufficient to reinstate drug-seeking behavior, pretreatment with E2 potentiated reinstatement to the ordinarily subthreshold cocaine dose. Furthermore, E2 microinfusions revealed that E2 (5 µg/0.3 µl, 15-min pretreatment) acts directly within the prelimbic prefrontal cortex (PrL-PFC) to potentiate reinstatement. As E2 has been implicated in endocannabinoid mobilization, which can disinhibit PrL-PFC projection neurons, we investigated whether cannabinoid type-1 receptor (CB1R) activation is necessary for E2 to potentiate reinstatement. The CB1R antagonist AM251 (1 or 3 mg/kg, i.p., 30-min pretreatment) administered prior to E2 and cocaine suppressed reinstatement in a dose-dependent manner. Finally, PrL-PFC AM251 microinfusions (300 ng/side, 15-min pretreatment) also suppressed E2-potentiated reinstatement. Together, these results suggest that E2 can augment reactivity to an ordinarily subthreshold relapse trigger in a PrL-PFC CB1R activation-dependent manner.


Asunto(s)
Cocaína/administración & dosificación , Comportamiento de Búsqueda de Drogas/efectos de los fármacos , Estradiol/metabolismo , Estrógenos/metabolismo , Corteza Prefrontal/metabolismo , Receptor Cannabinoide CB1/metabolismo , Animales , Inhibidores de Captación de Dopamina/administración & dosificación , Relación Dosis-Respuesta a Droga , Comportamiento de Búsqueda de Drogas/fisiología , Estradiol/farmacología , Estrógenos/farmacología , Femenino , Piperidinas/farmacología , Corteza Prefrontal/efectos de los fármacos , Pirazoles/farmacología , Ratas , Ratas Sprague-Dawley , Receptor Cannabinoide CB1/antagonistas & inhibidores , Autoadministración , Factores Sexuales
20.
Horm Behav ; 83: 60-67, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27178577

RESUMEN

The potent estrogen 17ß-Estradiol (E2) plays a critical role in mediating hippocampal function, yet the precise mechanisms through which E2 enhances hippocampal memory remain unclear. In young adult female rodents, the beneficial effects of E2 on memory are generally attributed to ovarian-synthesized E2. However, E2 is also synthesized in the adult brain in numerous species, where it regulates synaptic plasticity and is synthesized in response to experiences such as exposure to females or conspecific song. Although de novo E2 synthesis has been demonstrated in rodent hippocampal cultures, little is known about the functional role of local E2 synthesis in mediating hippocampal memory function. Therefore, the present study examined the role of hippocampal E2 synthesis in hippocampal memory consolidation. Using bilateral dorsal hippocampal infusions of the aromatase inhibitor letrozole, we first found that blockade of dorsal hippocampal E2 synthesis impaired hippocampal memory consolidation. We next found that elevated levels of E2 in the dorsal hippocampus observed 30min after object training were blocked by dorsal hippocampal infusion of letrozole, suggesting that behavioral experience increases acute and local E2 synthesis. Finally, aromatase inhibition did not prevent exogenous E2 from enhancing hippocampal memory consolidation, indicating that hippocampal E2 synthesis is not necessary for exogenous E2 to enhance hippocampal memory. Combined, these data are consistent with the hypothesis that hippocampally-synthesized E2 is necessary for hippocampus-dependent memory consolidation in rodents.


Asunto(s)
Inhibidores de la Aromatasa/farmacología , Estradiol/biosíntesis , Hipocampo/efectos de los fármacos , Consolidación de la Memoria/efectos de los fármacos , Nitrilos/farmacología , Triazoles/farmacología , Animales , Femenino , Hipocampo/metabolismo , Letrozol , Memoria/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Plasticidad Neuronal/efectos de los fármacos , Ovariectomía , Reconocimiento en Psicología/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA