Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
BMJ Health Care Inform ; 30(1)2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37364923

RESUMEN

BACKGROUND: The assessment of language and cognition in children at risk of impaired neurodevelopment following neonatal care is a UK standard of care but there is no national, systematic approach for obtaining these data. To overcome these challenges, we developed and evaluated a digital version of a validated parent questionnaire to assess cognitive and language development at age 2 years, the Parent Report of Children's Abilities-Revised (PARCA-R). METHODS: We involved clinicians and parents of babies born very preterm who received care in north-west London neonatal units. We developed a digital version of the PARCA-R questionnaire using standard software. Following informed consent, parents received automated notifications and an invitation to complete the questionnaire on a mobile phone, tablet or computer when their child approached the appropriate age window. Parents could save and print a copy of the results. We evaluated ease of use, parent acceptability, consent for data sharing through integration into a research database and making results available to the clinical team. RESULTS: Clinical staff approached the parents of 41 infants; 38 completed the e-registration form and 30 signed the e-consent. The digital version of the PARCA-R was completed by the parents of 21 of 23 children who reached the appropriate age window. Clinicians and parents found the system easy to use. Only one parent declined permission to integrate data into the National Neonatal Research Database for approved secondary purposes. DISCUSSION: This electronic data collection system and associated automated processes enabled efficient systematic capture of data on language and cognitive development in high-risk children, suitable for national delivery at scale.


Asunto(s)
Tecnología Digital , Desarrollo del Lenguaje , Recién Nacido , Lactante , Humanos , Niño , Preescolar , Estudios de Factibilidad , Electrónica , Cognición
2.
EClinicalMedicine ; 38: 100984, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34355154

RESUMEN

BACKGROUND: Interpretation of incidental findings on term neonatal MRI brain imaging can be challenging as there is a paucity of published normative data on asymptomatic term neonates. Reporting radiologists and clinicians need to be familiar with these incidental findings to avoid over-investigation and misinterpretation particularly in relation to neurodevelopmental outcome. This study aimed to determine the prevalence of incidental findings in a large group of asymptomatic term neonates participating in the Developing Human Connectome Project (dHCP) who were invited for neurodevelopmental assessment at 18 months. METHODS: We retrospectively reviewed MRI brain scans performed on 500 term neonates enrolled in the dHCP study between 2015 and 2019 with normal clinical examination. We reviewed the results of the Bayley Scales of Infant and Toddler Development (Bayley III) applied to participants who attended for neurodevelopmental follow-up at 18 months. Scores considered "delayed" if <70 on language, cognitive or motor scales. FINDINGS: Incidental findings were observed in 47% of term infants. Acute cerebral infarcts were incidentally noted in five neonates (1%). More common incidental findings included punctate white matter lesions (PWMLs) (12%) and caudothalamic subependymal cysts (10%). The most frequent incidental finding was intracranial haemorrhage (25%), particularly subdural haemorrhage (SDH). SDH and PWMLs were more common in infants delivered with ventouse-assistance versus other delivery methods.Neurodevelopmental results were available on 386/500 (77%). 14 infants had a language score < 70 (2 SD below the mean). Of the 386 infants with neurodevelopmental follow up at 18 months, group differences in motor and language scores between infants with and without incidental findings were not significant (p = 0·17 and p = 0·97 respectively). Group differences in cognitive scores at 18 months between infants with (median (interquartile range) -100 (95-105)) and without (100 (95-110)) incidental findings were of small effect size to suggest clinical significance (Cliff's d = 0·15; p<0·05). INTERPRETATION: Incidental findings are relatively common on brain MRI in asymptomatic term neonates, majority are clinically insignificant with normal neurodevelopment at 18 months. FUNDING: This work was supported by the European Research Council under the European Union's Seventh Framework Programme (FP7/20072013/ERC grant agreement no. [319456] dHCP project), by core funding from the Wellcome/EPSRC Centre for Medical Engineering [WT203148/Z/16/Z] and by the National Institute for Health Research (NIHR) Biomedical Research Centre based at Guy's and St Thomas' NHS Foundation Trust and King's College London and/or the NIHR Clinical Research Facility. The views expressed are those of the authors and not necessarily those of the NHS, the NIHR or the Department of Health and Social Care.

3.
Eur J Pediatr ; 180(1): 137-146, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32592026

RESUMEN

No consensus exists regarding the definition of ventilator-associated pneumonia (VAP) in neonates and reliability of chest X-ray (CXR) is low. Lung ultrasound (LU) is a potential alternative diagnostic tool. The aim was to define characteristics of VAP in our patient population and propose a multiparameter score, incorporating LU, for VAP diagnosis. Between March 25, 2018, and May 25, 2019, infants with VAP were identified. Clinical, laboratory and microbiology data were collected. CXRs and LU scans were reviewed. A multiparameter VAP score, including LU, was calculated on Day 1 and Day 3 for infants with VAP and for a control group and compared with CXR. VAP incidence was 10.47 episodes/1000 ventilator days. LU and CXR were available for 31 episodes in 21 infants with VAP, and for six episodes in five patients without VAP. On Day 1, a VAP score of > 4, and on Day 3 a score of > 5 showed sensitivity of 0.94, and area under the curve of 0.91 and 0.97, respectively. AUC for clinical information only was 0.88 and for clinical and CXR 0.85.Conclusion: The multiparameter VAP score including LU could be useful in diagnosing VAP in neonates with underlying lung pathology. What is Known: • Ventilator associated pneumonia (VAP) is common in infants on the neonatal unit and is associated with increased use of antibiotics, prolonged ventilation and higher incidence of chronic lung disease. • Commonly used definitions of VAP are difficult to apply in neonates and interpretation of chest X-ray is challenging with poor inter-rater agreement in patients with underlying chronic lung disease. What is New: • The multiparameter VAP score combining clinical, microbiology and lung ultrasound (LU) data is predictive for VAP diagnosis in preterm infants with chronic lung disease. • LU findings of VAP in neonates showed high inter-rater agreement and included consolidated lung areas, dynamic bronchograms and pleural effusion.


Asunto(s)
Neumonía Asociada al Ventilador , Humanos , Lactante , Recién Nacido , Recien Nacido Prematuro , Pulmón/diagnóstico por imagen , Neumonía Asociada al Ventilador/diagnóstico por imagen , Neumonía Asociada al Ventilador/epidemiología , Sistemas de Atención de Punto , Reproducibilidad de los Resultados
4.
EBioMedicine ; 47: 484-491, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31451436

RESUMEN

BACKGROUND: The TOBY-Xe proof of concept randomised trial found no effect of xenon combined with hypothermia after birth asphyxia on the lactate to N-acetyl aspartate ratio (Lac/NAA) in the thalamus and fractional anisotropy (FA) in white matter tracts measured within 15 days of birth. To confirm that these biomarkers are qualified to predict long-term outcome after neural rescue therapy we assessed surviving participants at 2-3 years of age. METHODS: Of the 92 infants in TOBY-Xe, one was omitted from the study, 69 survived and we assessed 62 participants, 32 in the hypothermia and xenon and 30 in the hypothermia only groups. We examined the relation between Lac/NAA and FA and the scores of the Bayley Scales of Infant and Toddler Development III and calculated their predictive accuracy for moderate or severe disability or death. RESULTS: Fifteen of 62 participants (24%) developed moderate/severe disability, and 22/92 (24%) died. The Lac/NAA ratio (difference in medians 0.628, 95% CI -0.392 to 4.684) and FA (difference in means -0.055, 95% CI -0.033 to -0.077) differed significantly between participants with or without moderate or severe disability or death and were significantly related with development scores in both groups. Adverse outcomes were correctly identified in 95.65% of cases by Lac/NAA and 78.79% by FA, with adequate mean calibration of the model. INTERPRETATION: The results confirm the qualification of the cerebral magnetic resonance biomarkers employed in the TOBY-Xe study as predictors of outcome after neuroprotective therapy. FUND: The Centre for the Developing Brain, King's College London, UK.


Asunto(s)
Asfixia Neonatal/metabolismo , Asfixia Neonatal/terapia , Biomarcadores , Corteza Cerebral/metabolismo , Hipotermia Inducida , Xenón/uso terapéutico , Asfixia Neonatal/etiología , Terapia Combinada , Humanos , Hipotermia Inducida/métodos , Fármacos Neuroprotectores/administración & dosificación , Fármacos Neuroprotectores/efectos adversos , Fármacos Neuroprotectores/uso terapéutico , Curva ROC , Reproducibilidad de los Resultados , Resultado del Tratamiento , Xenón/administración & dosificación , Xenón/efectos adversos
5.
Neuroimage ; 179: 11-29, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-29890325

RESUMEN

We propose a method for constructing a spatio-temporal cortical surface atlas of neonatal brains aged between 36 and 44 weeks of post-menstrual age (PMA) at the time of scan. The data were acquired as part of the Developing Human Connectome Project (dHCP), and the constructed surface atlases are publicly available. The method is based on a spherical registration approach: Multimodal Surface Matching (MSM), using cortical folding for driving the alignment. Templates have been generated for the anatomical cortical surface and for the cortical feature maps: sulcal depth, curvature, thickness, T1w/T2w myelin maps and cortical regions. To achieve this, cortical surfaces from 270 infants were first projected onto the sphere. Templates were then generated in two stages: first, a reference space was initialised via affine alignment to a group average adult template. Following this, templates were iteratively refined through repeated alignment of individuals to the template space until the variability of the average feature sets converged. Finally, bias towards the adult reference was removed by applying the inverse of the average affine transformations on the template and de-drifting the template. We used temporal adaptive kernel regression to produce age-dependant atlases for 9 weeks (36-44 weeks PMA). The generated templates capture expected patterns of cortical development including an increase in gyrification as well as an increase in thickness and T1w/T2w myelination with increasing age.


Asunto(s)
Atlas como Asunto , Corteza Cerebral/anatomía & histología , Conectoma/métodos , Recién Nacido , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética
6.
Neuroimage ; 173: 88-112, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29409960

RESUMEN

The Developing Human Connectome Project (dHCP) seeks to create the first 4-dimensional connectome of early life. Understanding this connectome in detail may provide insights into normal as well as abnormal patterns of brain development. Following established best practices adopted by the WU-MINN Human Connectome Project (HCP), and pioneered by FreeSurfer, the project utilises cortical surface-based processing pipelines. In this paper, we propose a fully automated processing pipeline for the structural Magnetic Resonance Imaging (MRI) of the developing neonatal brain. This proposed pipeline consists of a refined framework for cortical and sub-cortical volume segmentation, cortical surface extraction, and cortical surface inflation, which has been specifically designed to address considerable differences between adult and neonatal brains, as imaged using MRI. Using the proposed pipeline our results demonstrate that images collected from 465 subjects ranging from 28 to 45 weeks post-menstrual age (PMA) can be processed fully automatically; generating cortical surface models that are topologically correct, and correspond well with manual evaluations of tissue boundaries in 85% of cases. Results improve on state-of-the-art neonatal tissue segmentation models and significant errors were found in only 2% of cases, where these corresponded to subjects with high motion. Downstream, these surfaces will enhance comparisons of functional and diffusion MRI datasets, supporting the modelling of emerging patterns of brain connectivity.


Asunto(s)
Encéfalo/anatomía & histología , Conectoma/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Femenino , Humanos , Recién Nacido , Imagen por Resonancia Magnética/métodos , Masculino
7.
Neuroimage Clin ; 17: 596-606, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29234596

RESUMEN

BACKGROUND: Preterm infants are at high risk of diffuse white matter injury and adverse neurodevelopmental outcome. The multiple hit hypothesis suggests that the risk of white matter injury increases with cumulative exposure to multiple perinatal risk factors. Our aim was to test this hypothesis in a large cohort of preterm infants using diffusion weighted magnetic resonance imaging (dMRI). METHODS: We studied 491 infants (52% male) without focal destructive brain lesions born at < 34 weeks, who underwent structural and dMRI at a specialist Neonatal Imaging Centre. The median (range) gestational age (GA) at birth was 30+ 1 (23+ 2-33+ 5) weeks and median postmenstrual age at scan was 42+ 1 (38-45) weeks. dMRI data were analyzed using tract based spatial statistics and the relationship between dMRI measures in white matter and individual perinatal risk factors was assessed. We tested the hypothesis that increased exposure to perinatal risk factors was associated with lower fractional anisotropy (FA), and higher radial, axial and mean diffusivity (RD, AD, MD) in white matter. Neurodevelopmental performance was investigated using the Bayley Scales of Infant and Toddler Development, Third Edition (BSITD-III) in a subset of 381 infants at 20 months corrected age. We tested the hypothesis that lower FA and higher RD, AD and MD in white matter were associated with poorer neurodevelopmental performance. RESULTS: Identified risk factors for diffuse white matter injury were lower GA at birth, fetal growth restriction, increased number of days requiring ventilation and parenteral nutrition, necrotizing enterocolitis and male sex. Clinical chorioamnionitis and patent ductus arteriosus were not associated with white matter injury. Multivariate analysis demonstrated that fetal growth restriction, increased number of days requiring ventilation and parenteral nutrition were independently associated with lower FA values. Exposure to cumulative risk factors was associated with reduced white matter FA and FA values at term equivalent age were associated with subsequent neurodevelopmental performance. CONCLUSION: This study suggests multiple perinatal risk factors have an independent association with diffuse white matter injury at term equivalent age and exposure to multiple perinatal risk factors exacerbates dMRI defined, clinically significant white matter injury. Our findings support the multiple hit hypothesis for preterm white matter injury.


Asunto(s)
Lesiones Encefálicas/etiología , Lesiones Encefálicas/patología , Encéfalo/patología , Sustancia Blanca/patología , Encéfalo/diagnóstico por imagen , Lesiones Encefálicas/diagnóstico por imagen , Estudios de Cohortes , Imagen de Difusión por Resonancia Magnética , Imagen de Difusión Tensora , Edad Gestacional , Humanos , Recién Nacido , Recien Nacido Prematuro , Masculino , Factores de Riesgo , Sustancia Blanca/diagnóstico por imagen
8.
Neuroimage ; 167: 453-465, 2018 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-29100940

RESUMEN

In brain imaging, accurate alignment of cortical surfaces is fundamental to the statistical sensitivity and spatial localisation of group studies, and cortical surface-based alignment has generally been accepted to be superior to volume-based approaches at aligning cortical areas. However, human subjects have considerable variation in cortical folding, and in the location of functional areas relative to these folds. This makes alignment of cortical areas a challenging problem. The Multimodal Surface Matching (MSM) tool is a flexible, spherical registration approach that enables accurate registration of surfaces based on a variety of different features. Using MSM, we have previously shown that driving cross-subject surface alignment, using areal features, such as resting state-networks and myelin maps, improves group task fMRI statistics and map sharpness. However, the initial implementation of MSM's regularisation function did not penalize all forms of surface distortion evenly. In some cases, this allowed peak distortions to exceed neurobiologically plausible limits, unless regularisation strength was increased to a level which prevented the algorithm from fully maximizing surface alignment. Here we propose and implement a new regularisation penalty, derived from physically relevant equations of strain (deformation) energy, and demonstrate that its use leads to improved and more robust alignment of multimodal imaging data. In addition, since spherical warps incorporate projection distortions that are unavoidable when mapping from a convoluted cortical surface to the sphere, we also propose constraints that enforce smooth deformation of cortical anatomies. We test the impact of this approach for longitudinal modelling of cortical development for neonates (born between 31 and 43 weeks of post-menstrual age) and demonstrate that the proposed method increases the biological interpretability of the distortion fields and improves the statistical significance of population-based analysis relative to other spherical methods.


Asunto(s)
Corteza Cerebral/anatomía & histología , Corteza Cerebral/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Neuroimagen/métodos , Corteza Cerebral/crecimiento & desarrollo , Humanos , Recién Nacido , Estudios Longitudinales , Modelos Teóricos
9.
Sci Rep ; 7(1): 13250, 2017 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-29038505

RESUMEN

Preterm infants who develop neurodevelopmental impairment do not always have recognized abnormalities on cerebral ultrasound, a modality routinely used to assess prognosis. In a high proportion of infants, MRI detects punctate white matter lesions that are not seen on ultrasonography. To determine the relation of punctate lesions to brain development and early neurodevelopmental outcome we used multimodal brain MRI to study a large cohort of preterm infants. Punctate lesions without other focal cerebral or cerebellar lesions were detected at term equivalent age in 123 (24.3%) (59 male) of the 506 infants, predominantly in the centrum semiovale and corona radiata. Infants with lesions had higher gestational age, birth weight, and less chronic lung disease. Punctate lesions showed a dose dependent relation to abnormalities in white matter microstructure, assessed with tract-based spatial statistics, and reduced thalamic volume (p < 0.0001), and predicted unfavourable motor outcome at a median (range) corrected age of 20.2 (18.4-26.3) months with sensitivity (95% confidence intervals) 71 (43-88) and specificity 72 (69-77). Punctate white matter lesions without associated cerebral lesions are common in preterm infants currently not regarded as at highest risk for cerebral injury, and are associated with widespread neuroanatomical abnormalities and adverse early neurodevelopmental outcome.


Asunto(s)
Sustancia Blanca/patología , Sustancia Blanca/fisiopatología , Lesiones Encefálicas/diagnóstico por imagen , Lesiones Encefálicas/patología , Lesiones Encefálicas/fisiopatología , Imagen de Difusión Tensora , Femenino , Humanos , Lactante , Recien Nacido Prematuro , Imagen por Resonancia Magnética , Masculino , Sustancia Blanca/diagnóstico por imagen
10.
Neuroimage ; 149: 379-392, 2017 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-28153637

RESUMEN

Preterm infants are at high risk of neurodevelopmental impairment, which may be due to altered development of brain connectivity. We aimed to (i) assess structural brain development from 25 to 45 weeks gestational age (GA) using graph theoretical approaches and (ii) test the hypothesis that preterm birth results in altered white matter network topology. Sixty-five infants underwent MRI between 25+3 and 45+6 weeks GA. Structural networks were constructed using constrained spherical deconvolution tractography and were weighted by measures of white matter microstructure (fractional anisotropy, neurite density and orientation dispersion index). We observed regional differences in brain maturation, with connections to and from deep grey matter showing most rapid developmental changes during this period. Intra-frontal, frontal to cingulate, frontal to caudate and inter-hemispheric connections matured more slowly. We demonstrated a core of key connections that was not affected by GA at birth. However, local connectivity involving thalamus, cerebellum, superior frontal lobe, cingulate gyrus and short range cortico-cortical connections was related to the degree of prematurity and contributed to altered global topology of the structural brain network. The relative preservation of core connections at the expense of local connections may support more effective use of impaired white matter reserve following preterm birth.


Asunto(s)
Encéfalo/crecimiento & desarrollo , Recien Nacido Prematuro/crecimiento & desarrollo , Vías Nerviosas/crecimiento & desarrollo , Imagen de Difusión Tensora/métodos , Femenino , Edad Gestacional , Humanos , Interpretación de Imagen Asistida por Computador/métodos , Recién Nacido , Imagen por Resonancia Magnética , Masculino
11.
Magn Reson Med ; 78(2): 794-804, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-27643791

RESUMEN

PURPOSE: The goal of the Developing Human Connectome Project is to acquire MRI in 1000 neonates to create a dynamic map of human brain connectivity during early development. High-quality imaging in this cohort without sedation presents a number of technical and practical challenges. METHODS: We designed a neonatal brain imaging system (NBIS) consisting of a dedicated 32-channel receive array coil and a positioning device that allows placement of the infant's head deep into the coil for maximum signal-to-noise ratio (SNR). Disturbance to the infant was minimized by using an MRI-compatible trolley to prepare and transport the infant and by employing a slow ramp-up and continuation of gradient noise during scanning. Scan repeats were minimized by using a restart capability for diffusion MRI and retrospective motion correction. We measured the 1) SNR gain, 2) number of infants with a completed scan protocol, and 3) number of anatomical images with no motion artifact using NBIS compared with using an adult 32-channel head coil. RESULTS: The NBIS has 2.4 times the SNR of the adult coil and 90% protocol completion rate. CONCLUSION: The NBIS allows advanced neonatal brain imaging techniques to be employed in neonatal brain imaging with high protocol completion rates. Magn Reson Med 78:794-804, 2017. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.


Asunto(s)
Encéfalo/diagnóstico por imagen , Conectoma/instrumentación , Recién Nacido/fisiología , Imagen por Resonancia Magnética/instrumentación , Neuroimagen/instrumentación , Conectoma/métodos , Humanos , Imagen por Resonancia Magnética/métodos , Neuroimagen/métodos , Relación Señal-Ruido
12.
Cereb Cortex ; 26(1): 402-413, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26491066

RESUMEN

Preterm birth engenders an increased risk of conditions like cerebral palsy and therefore this time may be crucial for the brain's developing sensori-motor system. However, little is known about how cortical sensori-motor function matures at this time, whether development is influenced by experience, and about its role in spontaneous motor behavior. We aimed to systematically characterize spatial and temporal maturation of sensori-motor functional brain activity across this period using functional MRI and a custom-made robotic stimulation device. We studied 57 infants aged from 30 + 2 to 43 + 2 weeks postmenstrual age. Following both induced and spontaneous right wrist movements, we saw consistent positive blood oxygen level-dependent functional responses in the contralateral (left) primary somatosensory and motor cortices. In addition, we saw a maturational trend toward faster, higher amplitude, and more spatially dispersed functional responses; and increasing integration of the ipsilateral hemisphere and sensori-motor associative areas. We also found that interhemispheric functional connectivity was significantly related to ex-utero exposure, suggesting the influence of experience-dependent mechanisms. At term equivalent age, we saw a decrease in both response amplitude and interhemispheric functional connectivity, and an increase in spatial specificity, culminating in the establishment of a sensori-motor functional response similar to that seen in adults.


Asunto(s)
Encéfalo/crecimiento & desarrollo , Imagen por Resonancia Magnética , Movimiento/fisiología , Corteza Sensoriomotora/crecimiento & desarrollo , Muñeca/fisiología , Encéfalo/fisiología , Humanos , Lactante , Imagen por Resonancia Magnética/métodos , Muñeca/crecimiento & desarrollo
13.
Neuroimage ; 125: 456-478, 2016 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-26499811

RESUMEN

Detailed morphometric analysis of the neonatal brain is required to characterise brain development and define neuroimaging biomarkers related to impaired brain growth. Accurate automatic segmentation of neonatal brain MRI is a prerequisite to analyse large datasets. We have previously presented an accurate and robust automatic segmentation technique for parcellating the neonatal brain into multiple cortical and subcortical regions. In this study, we further extend our segmentation method to detect cortical sulci and provide a detailed delineation of the cortical ribbon. These detailed segmentations are used to build a 4-dimensional spatio-temporal structural atlas of the brain for 82 cortical and subcortical structures throughout this developmental period. We employ the algorithm to segment an extensive database of 420 MR images of the developing brain, from 27 to 45weeks post-menstrual age at imaging. Regional volumetric and cortical surface measurements are derived and used to investigate brain growth and development during this critical period and to assess the impact of immaturity at birth. Whole brain volume, the absolute volume of all structures studied, cortical curvature and cortical surface area increased with increasing age at scan. Relative volumes of cortical grey matter, cerebellum and cerebrospinal fluid increased with age at scan, while relative volumes of white matter, ventricles, brainstem and basal ganglia and thalami decreased. Preterm infants at term had smaller whole brain volumes, reduced regional white matter and cortical and subcortical grey matter volumes, and reduced cortical surface area compared with term born controls, while ventricular volume was greater in the preterm group. Increasing prematurity at birth was associated with a reduction in total and regional white matter, cortical and subcortical grey matter volume, an increase in ventricular volume, and reduced cortical surface area.


Asunto(s)
Anatomía Artística , Atlas como Asunto , Encéfalo/crecimiento & desarrollo , Recien Nacido Prematuro/crecimiento & desarrollo , Neuronavegación/métodos , Femenino , Humanos , Recién Nacido , Imagen por Resonancia Magnética , Embarazo , Nacimiento Prematuro
14.
Lancet Neurol ; 15(2): 145-153, 2016 02.
Artículo en Inglés | MEDLINE | ID: mdl-26708675

RESUMEN

BACKGROUND: Moderate cooling after birth asphyxia is associated with substantial reductions in death and disability, but additional therapies might provide further benefit. We assessed whether the addition of xenon gas, a promising novel therapy, after the initiation of hypothermia for birth asphyxia would result in further improvement. METHODS: Total Body hypothermia plus Xenon (TOBY-Xe) was a proof-of-concept, randomised, open-label, parallel-group trial done at four intensive-care neonatal units in the UK. Eligible infants were 36-43 weeks of gestational age, had signs of moderate to severe encephalopathy and moderately or severely abnormal background activity for at least 30 min or seizures as shown by amplitude-integrated EEG (aEEG), and had one of the following: Apgar score of 5 or less 10 min after birth, continued need for resuscitation 10 min after birth, or acidosis within 1 h of birth. Participants were allocated in a 1:1 ratio by use of a secure web-based computer-generated randomisation sequence within 12 h of birth to cooling to a rectal temperature of 33·5°C for 72 h (standard treatment) or to cooling in combination with 30% inhaled xenon for 24 h started immediately after randomisation. The primary outcomes were reduction in lactate to N-acetyl aspartate ratio in the thalamus and in preserved fractional anisotropy in the posterior limb of the internal capsule, measured with magnetic resonance spectroscopy and MRI, respectively, within 15 days of birth. The investigator assessing these outcomes was masked to allocation. Analysis was by intention to treat. This trial is registered with ClinicalTrials.gov, number NCT00934700, and with ISRCTN, as ISRCTN08886155. FINDINGS: The study was done from Jan 31, 2012, to Sept 30, 2014. We enrolled 92 infants, 46 of whom were randomly assigned to cooling only and 46 to xenon plus cooling. 37 infants in the cooling only group and 41 in the cooling plus xenon group underwent magnetic resonance assessments and were included in the analysis of the primary outcomes. We noted no significant differences in lactate to N-acetyl aspartate ratio in the thalamus (geometric mean ratio 1·09, 95% CI 0·90 to 1·32) or fractional anisotropy (mean difference -0·01, 95% CI -0·03 to 0·02) in the posterior limb of the internal capsule between the two groups. Nine infants died in the cooling group and 11 in the xenon group. Two adverse events were reported in the xenon group: subcutaneous fat necrosis and transient desaturation during the MRI. No serious adverse events were recorded. INTERPRETATION: Administration of xenon within the delayed timeframe used in this trial is feasible and apparently safe, but is unlikely to enhance the neuroprotective effect of cooling after birth asphyxia. FUNDING: UK Medical Research Council.


Asunto(s)
Anestésicos por Inhalación/farmacología , Asfixia Neonatal/terapia , Hipotermia Inducida/métodos , Cápsula Interna/diagnóstico por imagen , Evaluación de Resultado en la Atención de Salud , Tálamo/diagnóstico por imagen , Xenón/farmacología , Acidosis/etiología , Anestésicos por Inhalación/administración & dosificación , Anestésicos por Inhalación/efectos adversos , Puntaje de Apgar , Ácido Aspártico/análogos & derivados , Ácido Aspártico/metabolismo , Asfixia Neonatal/complicaciones , Terapia Combinada , Estudios de Factibilidad , Femenino , Humanos , Recién Nacido , Ácido Láctico/metabolismo , Imagen por Resonancia Magnética , Masculino , Resucitación , Método Simple Ciego , Xenón/administración & dosificación , Xenón/efectos adversos
15.
Proc Natl Acad Sci U S A ; 112(20): 6485-90, 2015 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-25941391

RESUMEN

Connections between the thalamus and cortex develop rapidly before birth, and aberrant cerebral maturation during this period may underlie a number of neurodevelopmental disorders. To define functional thalamocortical connectivity at the normal time of birth, we used functional MRI (fMRI) to measure blood oxygen level-dependent (BOLD) signals in 66 infants, 47 of whom were at high risk of neurocognitive impairment because of birth before 33 wk of gestation and 19 of whom were term infants. We segmented the thalamus based on correlation with functionally defined cortical components using independent component analysis (ICA) and seed-based correlations. After parcellating the cortex using ICA and segmenting the thalamus based on dominant connections with cortical parcellations, we observed a near-facsimile of the adult functional parcellation. Additional analysis revealed that BOLD signal in heteromodal association cortex typically had more widespread and overlapping thalamic representations than primary sensory cortex. Notably, more extreme prematurity was associated with increased functional connectivity between thalamus and lateral primary sensory cortex but reduced connectivity between thalamus and cortex in the prefrontal, insular and anterior cingulate regions. This work suggests that, in early infancy, functional integration through thalamocortical connections depends on significant functional overlap in the topographic organization of the thalamus and that the experience of premature extrauterine life modulates network development, altering the maturation of networks thought to support salience, executive, integrative, and cognitive functions.


Asunto(s)
Corteza Cerebral/fisiología , Desarrollo Infantil/fisiología , Tálamo/fisiología , Factores de Edad , Humanos , Recién Nacido , Recien Nacido Prematuro , Imagen por Resonancia Magnética , Vías Nerviosas/fisiología , Oxígeno/sangre
16.
PLoS One ; 10(5): e0125681, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25955638

RESUMEN

White matter tracts mature asymmetrically during development, and this development can be studied using diffusion magnetic resonance imaging. The aims of this study were i. to generate dynamic population-averaged white matter registration templates covering in detail the period from 25 weeks gestational age to term, and extending to 2 years of age based on DTI and fractional anisotropy, ii. to produce tract-specific probability maps of the corticospinal tracts, forceps major and forceps minor using probabilistic tractography, and iii. to assess the development of these tracts throughout this critical period of neurodevelopment. We found evidence for asymmetric development across the fiber bundles studied, with the corticospinal tracts showing earlier maturation (as measured by fractional anisotropy) but slower volumetric growth compared to the callosal fibers. We also found evidence for an anterior to posterior gradient in white matter microstructure development (as measured by mean diffusivity) in the callosal fibers, with the posterior forceps major developing at a faster rate than the anterior forceps minor in this age range. Finally, we report a protocol for delineating callosal and corticospinal fibers in extremely premature cohorts, and make available population-averaged registration templates and a probabilistic tract atlas which we hope will be useful for future neonatal and infant white-matter imaging studies.


Asunto(s)
Cuerpo Calloso/crecimiento & desarrollo , Tractos Piramidales/crecimiento & desarrollo , Cuerpo Calloso/diagnóstico por imagen , Bases de Datos Factuales , Imagen de Difusión por Resonancia Magnética , Femenino , Edad Gestacional , Humanos , Lactante , Recién Nacido , Recién Nacido de muy Bajo Peso , Masculino , Nacimiento Prematuro , Tractos Piramidales/diagnóstico por imagen , Radiografía
17.
Cereb Cortex ; 25(11): 4310-8, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25596587

RESUMEN

Thalamocortical connections are: essential for brain function, established early in development, and significantly impaired following preterm birth. Impaired cognitive abilities in preterm infants may be related to disruptions in thalamocortical connectivity. The aim of this study was to test the hypothesis: thalamocortical connectivity in the preterm brain at term-equivalent is correlated with cognitive performance in early childhood. We examined 57 infants who were born <35 weeks gestational age (GA) and had no evidence of focal abnormality on magnetic resonance imaging (MRI). Infants underwent diffusion MRI at term and cognitive performance at 2 years was assessed using the Bayley III scales of Infant and Toddler development. Cognitive scores at 2 years were correlated with structural connectivity between the thalamus and extensive cortical regions at term. Mean thalamocortical connectivity across the whole cortex explained 11% of the variance in cognitive scores at 2 years. The inclusion of GA at birth and parental socioeconomic group in the model explained 30% of the variance in subsequent cognitive performance. Identifying impairments in thalamocortical connectivity as early as term equivalent can help identify those infants at risk of subsequent cognitive delay and may be useful to assess efficacy of potential treatments at an early age.


Asunto(s)
Corteza Cerebral/patología , Trastornos del Conocimiento/diagnóstico , Trastornos del Conocimiento/etiología , Nacimiento Prematuro/patología , Nacimiento Prematuro/fisiopatología , Tálamo/patología , Imagen de Difusión por Resonancia Magnética , Femenino , Edad Gestacional , Sustancia Gris/patología , Humanos , Procesamiento de Imagen Asistido por Computador , Lactante , Recién Nacido , Modelos Lineales , Imagen por Resonancia Magnética , Masculino , Vías Nerviosas/patología , Pruebas Neuropsicológicas , Valor Predictivo de las Pruebas
19.
N Engl J Med ; 371(2): 140-9, 2014 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-25006720

RESUMEN

BACKGROUND: In the Total Body Hypothermia for Neonatal Encephalopathy Trial (TOBY), newborns with asphyxial encephalopathy who received hypothermic therapy had improved neurologic outcomes at 18 months of age, but it is uncertain whether such therapy results in longer-term neurocognitive benefits. METHODS: We randomly assigned 325 newborns with asphyxial encephalopathy who were born at a gestational age of 36 weeks or more to receive standard care alone (control) or standard care with hypothermia to a rectal temperature of 33 to 34°C for 72 hours within 6 hours after birth. We evaluated the neurocognitive function of these children at 6 to 7 years of age. The primary outcome of this analysis was the frequency of survival with an IQ score of 85 or higher. RESULTS: A total of 75 of 145 children (52%) in the hypothermia group versus 52 of 132 (39%) in the control group survived with an IQ score of 85 or more (relative risk, 1.31; P=0.04). The proportions of children who died were similar in the hypothermia group and the control group (29% and 30%, respectively). More children in the hypothermia group than in the control group survived without neurologic abnormalities (65 of 145 [45%] vs. 37 of 132 [28%]; relative risk, 1.60; 95% confidence interval, 1.15 to 2.22). Among survivors, children in the hypothermia group, as compared with those in the control group, had significant reductions in the risk of cerebral palsy (21% vs. 36%, P=0.03) and the risk of moderate or severe disability (22% vs. 37%, P=0.03); they also had significantly better motor-function scores. There was no significant between-group difference in parental assessments of children's health status and in results on 10 of 11 psychometric tests. CONCLUSIONS: Moderate hypothermia after perinatal asphyxia resulted in improved neurocognitive outcomes in middle childhood. (Funded by the United Kingdom Medical Research Council and others; TOBY ClinicalTrials.gov number, NCT01092637.).


Asunto(s)
Asfixia Neonatal/terapia , Hipotermia Inducida , Inteligencia , Asfixia Neonatal/complicaciones , Asfixia Neonatal/mortalidad , Parálisis Cerebral/epidemiología , Parálisis Cerebral/etiología , Niño , Discapacidades del Desarrollo/epidemiología , Discapacidades del Desarrollo/etiología , Femenino , Estudios de Seguimiento , Edad Gestacional , Estado de Salud , Humanos , Recién Nacido , Masculino , Pruebas Psicológicas , Sobrevivientes
20.
Proc Natl Acad Sci U S A ; 111(20): 7456-61, 2014 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-24799693

RESUMEN

Combining diffusion magnetic resonance imaging and network analysis in the adult human brain has identified a set of highly connected cortical hubs that form a "rich club"--a high-cost, high-capacity backbone thought to enable efficient network communication. Rich-club architecture appears to be a persistent feature of the mature mammalian brain, but it is not known when this structure emerges during human development. In this longitudinal study we chart the emergence of structural organization in mid to late gestation. We demonstrate that a rich club of interconnected cortical hubs is already present by 30 wk gestation. Subsequently, until the time of normal birth, the principal development is a proliferation of connections between core hubs and the rest of the brain. We also consider the impact of environmental factors on early network development, and compare term-born neonates to preterm infants at term-equivalent age. Though rich-club organization remains intact following premature birth, we reveal significant disruptions in both in cortical-subcortical connectivity and short-distance corticocortical connections. Rich club organization is present well before the normal time of birth and may provide the fundamental structural architecture for the subsequent emergence of complex neurological functions. Premature exposure to the extrauterine environment is associated with altered network architecture and reduced network capacity, which may in part account for the high prevalence of cognitive problems in preterm infants.


Asunto(s)
Encéfalo/embriología , Encéfalo/crecimiento & desarrollo , Red Nerviosa/fisiología , Mapeo Encefálico , Cognición , Conectoma , Imagen de Difusión por Resonancia Magnética , Femenino , Humanos , Recién Nacido , Recien Nacido Prematuro , Masculino , Vías Nerviosas , Nacimiento Prematuro , Nacimiento a Término , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...