Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38895344

RESUMEN

Depletion or inhibition of core stress granule proteins, G3BP1 in mammals and TIAR-2 in C. elegans , increases axon regeneration in injured neurons that show spontaneous regeneration. Inhibition of G3BP1 by expression of its acidic or 'B-domain' accelerates axon regeneration after nerve injury bringing a potential therapeutic intervention to promote neural repair in the peripheral nervous system. Here, we asked if G3BP1 inhibition is a viable strategy to promote regeneration in the injured mammalian central nervous system where axons do not regenerate spontaneously. G3BP1 B-domain expression was found to promote axon regeneration in both the mammalian spinal cord and optic nerve. Moreover, a cell permeable peptide to a subregion of G3BP1's B-domain (rodent G3BP1 amino acids 190-208) accelerated axon regeneration after peripheral nerve injury and promoted the regrowth of reticulospinal axons into the distal transected spinal cord through a bridging peripheral nerve graft. The rodent and human G3BP1 peptides promoted axon growth from rodent and human neurons cultured on permissive substrates, and this function required alternating Glu/Asp-Pro repeats that impart a unique predicted tertiary structure. These studies point to G3BP1 granules as a critical impediment to CNS axon regeneration and indicate that G3BP1 granule disassembly represents a novel therapeutic strategy for promoting neural repair after CNS injury.

2.
bioRxiv ; 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38260445

RESUMEN

Homeostatic modulation is pivotal in modern therapeutics. However, the discovery of bioactive materials to achieve this functionality is often random and unpredictive. Here, we enabled a systemic identification and functional classification of chemicals that elicit homeostatic modulation of signaling through Cdc42, a classical small GTPase of Ras superfamily. Rationally designed for high throughput screening, the capture of homeostatic modulators (HMs) along with molecular re-docking uncovered at least five functionally distinct classes of small molecules. This enabling led to partial agonists, hormetic agonists, bona fide activators and inhibitors, and ligand-enhanced agonists. Novel HMs exerted striking functionality in bradykinin-Cdc42 activation of actin remodelingand modified Alzheimer's disease-like behavior in mouse model. This concurrent computer-aided and experimentally empowered HM profiling highlights a model path for predicting HM landscape. One Sentence Summary: With concurrent experimental biochemical profiling and in silico computer-aided drug discovery (CADD) analysis, this study enabled a systemic identification and holistic classification of Cdc42 homeostatic modulators (HMs) and demonstrated the power of CADD to predict HM classes that can mimic the pharmacological functionality of interests. Introduction: Maintainingbody homeostasisis the ultimate keyto health. Thereare rich resources of bioactive materials for this functionality from both natural and synthetic chemical repertories including partial agonists (PAs) and various allosteric modulators. These homeostatic modulators (HMs) play a unique role in modern therapeutics for human diseases such as mental disorders and drug addiction. Buspirone, for example, acts as a PA for serotonin 5-HT 1A receptor but is an antagonist of the dopamine D 2 receptor. Such medical useto treat general anxietydisorders (GADs) has become one of the most-commonly prescribed medications. However, most HMs in current uses target membrane proteins and are often derived from random discoveries. HMs as therapeutics targeting cytoplasmic proteins are even more rare despite that they are in paramount needs (e. g. targeting Ras superfamily small GTPases). Rationale: Cdc42, a classical member of small GTPases of Ras superfamily, regulates PI3K-AKT and Raf-MEK-ERK pathways and has been implicated in various neuropsychiatric and mental disorders as well as addictive diseases and cancer. We previously reported the high-throughput in-silico screening followed by biological characterization of novel small molecule modulators (SMMs) of Cdc42-intersectin (ITSN) protein-protein interactions (PPIs). Based on a serendipitously discovered SMM ZCL278 with PA profile as a model compound, we hypothesized that there are more varieties of such HMs of Cdc42 signaling, and the model HMs can be defined by their distinct Cdc42-ITSN binding mechanisms using computer-aided drug discovery (CADD) analysis. We further reasoned that molecular modeling coupled with experimental profiling can predict HM spectrum and thus open the door for the holistic identification and classification of multifunctional cytoplasmic target-dependent HMs as therapeutics. Results: The originally discovered Cdc42 inhibitor ZCL278 displaying PA properties prompted the inquiry whether this finding represented a random encounter of PAs or whether biologically significant PAs can be widely present. The top ranked compounds were initially defined by structural fitness and binding scores to Cdc42. Because higher binding scores do not necessarily translate to higher functionality, we performed exhaustive experimentations with over 2,500 independent Cdc42-GEF (guanine nucleotide exchange factor) assays to profile the GTP loading activities on all 44 top ranked compounds derived from the SMM library. The N-MAR-GTP fluorophore-based Cdc42-GEF assay platform provided the first glimpse of the breadth of HMs. A spectrum of Cdc42 HMs was uncovered that can be categorized into five functionally distinct classes: Class I-partial competitive agonists, Class II-hormetic agonists, Class III- bona fide inhibitors (or inverse agonists), Class IV- bona fide activators or agonists, and Class V-ligand-enhanced agonists. Remarkably, model HMs such as ZCL278, ZCL279, and ZCL367 elicited striking biological functionality in bradykinin-Cdc42 activation of actin remodeling and modified Alzheimer's disease (AD)-like behavior in mouse model. Concurrently, we applied Schrödinger-enabled analyses to perform CADD predicted classification of Cdc42 HMs. We modified the classic molecular docking to instill a preferential binding pocket order (PBPO) of Cdc42-ITSN, which was based on the five binding pockets in interface of Cdc42-ITSN. We additionally applied a structure-based pharmacophore hypothesis generation for the model compounds. Then, using Schrödinger's Phase Shape, 3D ligand alignments assigned HMs to Class I, II, III, IV, and V compounds. In this HM library compounds, PBPO, matching pharmacophoric featuring, and shape alignment, all put ZCL993 in Class II compound category, which was confirmed in the Cdc42-GEF assay. Conclusion: HMs can target diseased cells or tissues while minimizing impacts on tissues that are unaffected. Using Cdc42 HM model compounds as a steppingstone, GTPase activation-based screening of SMM library uncovered five functionally distinct Cdc42 HM classes among which novel efficacies towards alleviating dysregulated AD-like features in mice were identified. Furthermore, molecular re-docking of HM model compounds led to the concept of PBPO. The CADD analysis with PBPO revealed similar profile in a color-coded spectrum to these five distinct classes of Cdc42 HMs identified by biochemical functionality-based screening. The current study enabled a systemic identification and holistic classification of Cdc42 HMs and demonstrated the power of CADD to predict an HM category that can mimic the pharmacological functionality of interests. With artificial intelligence/machine learning (AI/ML) on the horizon to mirror experimental pharmacological discovery like AlphaFold for protein structure prediction, our study highlights a model path to actively capture and profile HMs in potentially any PPI landscape. Identification and functional classification of Cdc42 homeostatic modulators HMs: Using Cdc42 HM model compounds as reference, GTPase activation-based screening of compound libraries uncovered five functionally distinct Cdc42 HM classes. HMs showed novel efficacies towards alleviating dysregulated Alzheimer's disease (AD)-like behavioral and molecular deficits. In parallel, molecular re-docking of HM model compounds established their preferential binding pocket orders (PBPO). PBPO-based profiling (Red reflects the most, whereas green reflects the least, preferable binding pocket) revealed trends of similar pattern to the five classes from the functionality-based classification.

3.
Neuropharmacology ; 247: 109846, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38211698

RESUMEN

Tobacco smoking remains a leading cause of preventable death in the United States, with approximately a 5% success rate for smokers attempting to quit. High relapse rates have been linked to several genetic factors, indicating that the mechanistic relationship between genes and drugs of abuse is a valuable avenue for the development of novel smoking cessation therapies. For example, various single nucleotide polymorphisms (SNPs) in the gene for neuregulin 3 (NRG3) and its cognate receptor, the receptor tyrosine-protein kinase erbB-4 (ERBB4), have been linked to nicotine addiction. Our lab has previously shown that ERBB4 plays a role in anxiety-like behavior during nicotine withdrawal (WD); however, the neuronal mechanisms and circuit-specific effects of NRG3-ERBB4 signaling during nicotine and WD are unknown. The present study utilizes genetic, biochemical, and functional approaches to examine the anxiety-related behavioral and functional role of NRG3-ERBB4 signaling, specifically in the ventral hippocampus (VH) of male and female mice. We report that 24hWD from nicotine is associated with altered synaptic expression of VH NRG3 and ERBB4, and genetic disruption of VH ErbB4 leads to an elimination of anxiety-like behaviors induced during 24hWD. Moreover, we observed attenuation of GABAergic transmission as well as alterations in Ca2+-dependent network activity in the ventral CA1 area of VH ErbB4 knock-down mice during 24hWD. Our findings further highlight contributions of the NRG3-ERBB4 signaling pathway to anxiety-related behaviors seen during nicotine WD.


Asunto(s)
Nicotina , Síndrome de Abstinencia a Sustancias , Masculino , Femenino , Ratones , Animales , Nicotina/farmacología , Nicotina/metabolismo , Neurregulinas/genética , Neurregulinas/metabolismo , Síndrome de Abstinencia a Sustancias/metabolismo , Hipocampo/metabolismo , Transducción de Señal , Receptor ErbB-4/genética , Receptor ErbB-4/metabolismo
4.
Sci Adv ; 9(30): eadi0286, 2023 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-37506203

RESUMEN

Polypyrimidine tract binding protein 1 (PTBP1) is thought to be expressed only at embryonic stages in central neurons. Its down-regulation triggers neuronal differentiation in precursor and non-neuronal cells, an approach recently tested for generation of neurons de novo for amelioration of neurodegenerative disorders. Moreover, PTBP1 is replaced by its paralog PTBP2 in mature central neurons. Unexpectedly, we found that both proteins are coexpressed in adult sensory and motor neurons, with PTBP2 restricted mainly to the nucleus, while PTBP1 also shows axonal localization. Levels of axonal PTBP1 increased markedly after peripheral nerve injury, and it associates in axons with mRNAs involved in injury responses and nerve regeneration, including importin ß1 (KPNB1) and RHOA. Perturbation of PTBP1 affects local translation in axons, nociceptor neuron regeneration and both thermal and mechanical sensation. Thus, PTBP1 has functional roles in adult axons. Hence, caution is required before considering targeting of PTBP1 for therapeutic purposes.


Asunto(s)
Axones , Regeneración Nerviosa , Neuronas , Traumatismos de los Nervios Periféricos , Adulto , Humanos , Axones/metabolismo , Ribonucleoproteínas Nucleares Heterogéneas/genética , Ribonucleoproteínas Nucleares Heterogéneas/metabolismo , Interneuronas/metabolismo , Regeneración Nerviosa/genética , Neuronas/metabolismo , Traumatismos de los Nervios Periféricos/genética , Traumatismos de los Nervios Periféricos/metabolismo
5.
Methods Mol Biol ; 2636: 145-161, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36881299

RESUMEN

Spatial and temporal regulation of protein expression plays important roles in many cellular functions, particularly for highly polarized cell types. While the subcellular proteome can be altered by relocalizing proteins from other domains of the cell, transporting mRNAs to subcellular domains provides a means to locally synthesize new proteins in response to different stimuli. Localized protein synthesis is a critical mechanism in neurons that extend dendrites and axons long distances from their cell bodies. Here, we discuss methodologies that have been developed to study localized protein synthesis using axonal protein synthesis as an example. We provide an in-depth method using dual fluorescence recovery after photobleaching to visualize sites of protein synthesis using reporter cDNAs that encode two different localizing mRNAs along with diffusion-limited fluorescent reporter proteins. We show how this method can be used to determine how extracellular stimuli and different physiological states can alter the specificity of local mRNA translation in real time.


Asunto(s)
Axones , Cuerpo Celular , Transporte Biológico , Colorantes , ADN Complementario , ARN Mensajero/genética
6.
bioRxiv ; 2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36711798

RESUMEN

Tobacco smoking remains a leading cause of preventable death in the United States, with a less than 5% success rate for smokers attempting to quit. High relapse rates have been linked to several genetic factors, indicating that the mechanistic relationship between genes and drugs of abuse is a valuable avenue for the development of novel smoking cessation therapies. For example, various single nucleotide polymorphisms (SNPs) in the gene for neuregulin 3 (NRG3) and its cognate receptor, the receptor tyrosine-protein kinase erbB-4 (ERBB4), have been linked to nicotine addiction. Our lab has previously shown that ERBB4 plays a role in anxiety-like behavior during nicotine withdrawal (WD); however, the neuronal mechanisms and circuit-specific effects of NRG3-ERBB4 signaling during nicotine and WD are unknown. The present study utilizes genetic, biochemical, and functional approaches to examine the anxiety-related behavioral and functional role of NRG3-ERBB4 signaling, specifically in the ventral hippocampus (VH). We report that 24hWD from nicotine is associated with altered synaptic expression of VH NRG3 and ERBB4, and genetic disruption of VH ErbB4 leads to an elimination of anxiety-like behaviors induced during 24hWD. Moreover, we observed attenuation of GABAergic transmission as well as alterations in Ca2+-dependent network activity in the ventral CA1 area of VH ErbB4 knock-down mice during 24hWD. Our findings further highlight contributions of the NRG3-ERBB4 signaling pathway to anxiety-related behaviors seen during nicotine WD.

7.
Elife ; 112022 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-36515985

RESUMEN

Upon trauma, the adult murine peripheral nervous system (PNS) displays a remarkable degree of spontaneous anatomical and functional regeneration. To explore extrinsic mechanisms of neural repair, we carried out single-cell analysis of naïve mouse sciatic nerve, peripheral blood mononuclear cells, and crushed sciatic nerves at 1 day, 3 days, and 7 days following injury. During the first week, monocytes and macrophages (Mo/Mac) rapidly accumulate in the injured nerve and undergo extensive metabolic reprogramming. Proinflammatory Mo/Mac with a high glycolytic flux dominate the early injury response and rapidly give way to inflammation resolving Mac, programmed toward oxidative phosphorylation. Nerve crush injury causes partial leakiness of the blood-nerve barrier, proliferation of endoneurial and perineurial stromal cells, and entry of opsonizing serum proteins. Micro-dissection of the nerve injury site and distal nerve, followed by single-cell RNA-sequencing, identified distinct immune compartments, triggered by mechanical nerve wounding and Wallerian degeneration, respectively. This finding was independently confirmed with Sarm1-/- mice, in which Wallerian degeneration is greatly delayed. Experiments with chimeric mice showed that wildtype immune cells readily enter the injury site in Sarm1-/- mice, but are sparse in the distal nerve, except for Mo. We used CellChat to explore intercellular communications in the naïve and injured PNS and report on hundreds of ligand-receptor interactions. Our longitudinal analysis represents a new resource for neural tissue regeneration, reveals location- specific immune microenvironments, and reports on large intercellular communication networks. To facilitate mining of scRNAseq datasets, we generated the injured sciatic nerve atlas (iSNAT): https://cdb-rshiny.med.umich.edu/Giger_iSNAT/.


Asunto(s)
Traumatismos de los Nervios Periféricos , Degeneración Walleriana , Ratones , Animales , Degeneración Walleriana/metabolismo , Degeneración Walleriana/patología , Leucocitos Mononucleares , Nervio Ciático/metabolismo , Degeneración Nerviosa , Compresión Nerviosa , Traumatismos de los Nervios Periféricos/metabolismo , Regeneración Nerviosa , Proteínas del Citoesqueleto/metabolismo , Proteínas del Dominio Armadillo/metabolismo
8.
J Neurosci ; 42(43): 8054-8065, 2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-36096668

RESUMEN

The axon initial segment (AIS) generates action potentials and maintains neuronal polarity by regulating the differential trafficking and distribution of proteins, transport vesicles, and organelles. Injury and disease can disrupt the AIS, and the subsequent loss of clustered ion channels and polarity mechanisms may alter neuronal excitability and function. However, the impact of AIS disruption on axon regeneration after injury is unknown. We generated male and female mice with AIS-deficient multipolar motor neurons by deleting AnkyrinG, the master scaffolding protein required for AIS assembly and maintenance. We found that after nerve crush, neuromuscular junction reinnervation was significantly delayed in AIS-deficient motor neurons compared with control mice. In contrast, loss of AnkyrinG from pseudo-unipolar sensory neurons did not impair axon regeneration into the intraepidermal nerve fiber layer. Even after AIS-deficient motor neurons reinnervated the neuromuscular junction, they failed to functionally recover because of reduced synaptic vesicle protein 2 at presynaptic terminals. In addition, mRNA trafficking was disrupted in AIS-deficient axons. Our results show that, after nerve injury, an intact AIS is essential for efficient regeneration and functional recovery of axons in multipolar motor neurons. Our results also suggest that loss of polarity in AIS-deficient motor neurons impairs the delivery of axonal proteins, mRNAs, and other cargoes necessary for regeneration. Thus, therapeutic strategies for axon regeneration must consider preservation or reassembly of the AIS.SIGNIFICANCE STATEMENT Disruption of the axon initial segment is a common event after nervous system injury. For multipolar motor neurons, we show that axon initial segments are essential for axon regeneration and functional recovery after injury. Our results may help explain injuries where axon regeneration fails, and suggest strategies to promote more efficient axon regeneration.


Asunto(s)
Segmento Inicial del Axón , Axones , Masculino , Femenino , Ratones , Animales , Axones/fisiología , Segmento Inicial del Axón/metabolismo , Ancirinas/metabolismo , Regeneración Nerviosa , Sinapsis/metabolismo , Canales Iónicos/metabolismo , Neuronas Motoras/metabolismo , ARN Mensajero/metabolismo
9.
Commun Biol ; 5(1): 672, 2022 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-35798971

RESUMEN

The KH-type splicing regulatory protein (KHSRP) is an RNA-binding protein linked to decay of mRNAs with AU-rich elements. KHSRP was previously shown to destabilize Gap43 mRNA and decrease neurite growth in cultured embryonic neurons. Here, we have tested functions of KHSRP in vivo. We find upregulation of 1460 mRNAs in neocortex of adult Khsrp-/- mice, of which 527 bind to KHSRP with high specificity. These KHSRP targets are involved in pathways for neuronal morphology, axon guidance, neurotransmission and long-term memory. Khsrp-/- mice show increased axon growth and dendritic spine density in vivo. Neuronal cultures from Khsrp-/- mice show increased axon and dendrite growth and elevated KHSRP-target mRNAs, including subcellularly localized mRNAs. Furthermore, neuron-specific knockout of Khsrp confirms these are from neuron-intrinsic roles of KHSRP. Consistent with this, neurons in the hippocampus and infralimbic cortex of Khsrp-/- mice show elevations in frequency of miniature excitatory postsynaptic currents. The Khsrp-/- mice have deficits in trace conditioning and attention set-shifting tasks compared Khsrp+/+ mice, indicating impaired prefrontal- and hippocampal-dependent memory consolidation with loss of KHSRP. Overall, these results indicate that deletion of KHSRP impairs neuronal development resulting in alterations in neuronal morphology and function by changing post-transcriptional control of neuronal gene expression.


Asunto(s)
Consolidación de la Memoria , Proteínas de Unión al ARN , Transmisión Sináptica , Transactivadores , Animales , Ratones , Ratones Noqueados , ARN , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Transactivadores/genética , Transactivadores/metabolismo
10.
Nucleic Acids Res ; 50(10): 5772-5792, 2022 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-35556128

RESUMEN

Axonally synthesized proteins support nerve regeneration through retrograde signaling and local growth mechanisms. RNA binding proteins (RBP) are needed for this and other aspects of post-transcriptional regulation of neuronal mRNAs, but only a limited number of axonal RBPs are known. We used targeted proteomics to profile RBPs in peripheral nerve axons. We detected 76 proteins with reported RNA binding activity in axoplasm, and levels of several change with axon injury and regeneration. RBPs with altered levels include KHSRP that decreases neurite outgrowth in developing CNS neurons. Axonal KHSRP levels rapidly increase after injury remaining elevated up to 28 days post axotomy. Khsrp mRNA localizes into axons and the rapid increase in axonal KHSRP is through local translation of Khsrp mRNA in axons. KHSRP can bind to mRNAs with 3'UTR AU-rich elements and targets those transcripts to the cytoplasmic exosome for degradation. KHSRP knockout mice show increased axonal levels of KHSRP target mRNAs, Gap43, Snap25, and Fubp1, following sciatic nerve injury and these mice show accelerated nerve regeneration in vivo. Together, our data indicate that axonal translation of the RNA binding protein Khsrp mRNA following nerve injury serves to promote decay of other axonal mRNAs and slow axon regeneration.


Asunto(s)
Axones , Regeneración Nerviosa , Regiones no Traducidas 3'/genética , Animales , Axones/metabolismo , Ratones , Regeneración Nerviosa/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Ratas , Ratas Sprague-Dawley , Nervio Ciático/metabolismo
11.
EMBO J ; 40(20): e107158, 2021 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-34515347

RESUMEN

Nucleolin is a multifunctional RNA Binding Protein (RBP) with diverse subcellular localizations, including the nucleolus in all eukaryotic cells, the plasma membrane in tumor cells, and the axon in neurons. Here we show that the glycine arginine rich (GAR) domain of nucleolin drives subcellular localization via protein-protein interactions with a kinesin light chain. In addition, GAR sequences mediate plasma membrane interactions of nucleolin. Both these modalities are in addition to the already reported involvement of the GAR domain in liquid-liquid phase separation in the nucleolus. Nucleolin transport to axons requires the GAR domain, and heterozygous GAR deletion mice reveal reduced axonal localization of nucleolin cargo mRNAs and enhanced sensory neuron growth. Thus, the GAR domain governs axonal transport of a growth controlling RNA-RBP complex in neurons, and is a versatile localization determinant for different subcellular compartments. Localization determination by GAR domains may explain why GAR mutants in diverse RBPs are associated with neurodegenerative disease.


Asunto(s)
Nucléolo Celular/metabolismo , Ganglios Espinales/metabolismo , Cinesinas/metabolismo , Neuronas/metabolismo , Fosfoproteínas/química , Proteínas de Unión al ARN/química , Nervio Ciático/metabolismo , Secuencia de Aminoácidos , Animales , Transporte Axonal/genética , Línea Celular Tumoral , Nucléolo Celular/ultraestructura , Ganglios Espinales/citología , Expresión Génica , Células HEK293 , Células HeLa , Humanos , Cinesinas/genética , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Mutación , Neuronas/citología , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Cultivo Primario de Células , Dominios Proteicos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Nervio Ciático/citología , Nucleolina
12.
Curr Biol ; 31(14): R914-R917, 2021 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-34314722

RESUMEN

Neuronal injury can cause mitochondrial damage, leading to reduced energy production, decreased Ca2+ storage capacity, and increased reactive oxygen species. A new study reveals a mechanism to trigger the axonal transport of previously anchored mitochondria and promote neuroprotection and axon regeneration by replacing damaged with functional mitochondria.


Asunto(s)
Axones , Regeneración Nerviosa , Transporte Axonal , Axones/metabolismo , Neurobiología , Neuronas
13.
eNeuro ; 8(4)2021.
Artículo en Inglés | MEDLINE | ID: mdl-34326064

RESUMEN

Increased mTOR activity has been shown to enhance regeneration of injured axons by increasing neuronal protein synthesis, while PTEN signaling can block mTOR activity to attenuate protein synthesis. MicroRNAs (miRs) have been implicated in regulation of PTEN and mTOR expression, and previous work in spinal cord showed an increase in miR-199a-3p after spinal cord injury (SCI) and increase in miR-21 in SCI animals that had undergone exercise. Pten mRNA is a target for miR-21 and miR-199a-3p is predicted to target mTor mRNA. Here, we show that miR-21 and miR-199a-3p are expressed in adult dorsal root ganglion (DRG) neurons, and we used culture preparations to test functions of the rat miRs in adult DRG and embryonic cortical neurons. miR-21 increases and miR-199a-3p decreases in DRG neurons after in vivo axotomy. In both the adult DRG and embryonic cortical neurons, miR-21 promotes and miR-199a-3p attenuates neurite growth. miR-21 directly bound to Pten mRNA and miR-21 overexpression decreased Pten mRNA levels. Conversely, miR-199a-3p directly bound to mTor mRNA and miR-199a-3p overexpression decreased mTor mRNA levels. Overexpressing miR-21 increased both overall and intra-axonal protein synthesis in cultured DRGs, while miR-199a-3p overexpression decreased this protein synthesis. The axon growth phenotypes seen with miR-21 and miR-199a-3p overexpression were reversed by co-transfecting PTEN and mTOR cDNA expression constructs with the predicted 3' untranslated region (UTR) miR target sequences deleted. Taken together, these studies indicate that injury-induced alterations in miR-21 and miR-199a-3p expression can alter axon growth capacity by changing overall and intra-axonal protein synthesis through regulation of the PTEN/mTOR pathway.


Asunto(s)
Axones , MicroARNs , Fosfohidrolasa PTEN , Serina-Treonina Quinasas TOR , Animales , Axones/metabolismo , MicroARNs/genética , Fosfohidrolasa PTEN/genética , ARN Mensajero , Ratas , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo
14.
Molecules ; 26(10)2021 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-34064652

RESUMEN

The neuronal Hu/ELAV-like proteins HuB, HuC and HuD are a class of RNA-binding proteins that are crucial for proper development and maintenance of the nervous system. These proteins bind to AU-rich elements (AREs) in the untranslated regions (3'-UTRs) of target mRNAs regulating mRNA stability, transport and translation. In addition to these cytoplasmic functions, Hu proteins have been implicated in alternative splicing and alternative polyadenylation in the nucleus. The purpose of this study was to identify transcriptome-wide effects of HuD deletion on both of these nuclear events using RNA sequencing data obtained from the neocortex of Elavl4-/- (HuD KO) mice. HuD KO affected alternative splicing of 310 genes, including 17 validated HuD targets such as Cbx3, Cspp1, Snap25 and Gria2. In addition, deletion of HuD affected polyadenylation of 53 genes, with the majority of significantly altered mRNAs shifting towards usage of proximal polyadenylation signals (PAS), resulting in shorter 3'-UTRs. None of these genes overlapped with those showing alternative splicing events. Overall, HuD KO had a greater effect on alternative splicing than polyadenylation, with many of the affected genes implicated in several neuronal functions and neuropsychiatric disorders.


Asunto(s)
Empalme Alternativo/genética , Proteína 4 Similar a ELAV/genética , Neocórtex/metabolismo , Poliadenilación/genética , Animales , Proteína 4 Similar a ELAV/metabolismo , Exones/genética , Ratones Endogámicos C57BL , Ratones Noqueados , ARN Mensajero/genética , ARN Mensajero/metabolismo
15.
J Cell Sci ; 134(7)2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33674450

RESUMEN

The small Rho-family GTPase Cdc42 has long been known to have a role in cell motility and axon growth. The eukaryotic Ccd42 gene is alternatively spliced to generate mRNAs with two different 3' untranslated regions (UTRs) that encode proteins with distinct C-termini. The C-termini of these Cdc42 proteins include CaaX and CCaX motifs for post-translational prenylation and palmitoylation, respectively. Palmitoyl-Cdc42 protein was previously shown to contribute to dendrite maturation, while the prenyl-Cdc42 protein contributes to axon specification and its mRNA was detected in neurites. Here, we show that the mRNA encoding prenyl-Cdc42 isoform preferentially localizes into PNS axons and this localization selectively increases in vivo during peripheral nervous system (PNS) axon regeneration. Functional studies indicate that prenyl-Cdc42 increases axon length in a manner that requires axonal targeting of its mRNA, which, in turn, needs an intact C-terminal CaaX motif that can drive prenylation of the encoded protein. In contrast, palmitoyl-Cdc42 has no effect on axon growth but selectively increases dendrite length. Together, these data show that alternative splicing of the Cdc42 gene product generates an axon growth promoting, locally synthesized prenyl-Cdc42 protein. This article has an associated First Person interview with one of the co-first authors of the paper.


Asunto(s)
Axones , Isoformas de ARN , Axones/metabolismo , Lipoilación , Regeneración Nerviosa , Isoformas de ARN/metabolismo , Proteína de Unión al GTP cdc42/genética , Proteína de Unión al GTP cdc42/metabolismo
16.
Exp Neurol ; 339: 113594, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33450233

RESUMEN

Regeneration capacity is reduced as CNS axons mature. Using laser-mediated axotomy, proteomics and puromycin-based tagging of newly-synthesized proteins in a human embryonic stem cell-derived neuron culture system that allows isolation of axons from cell bodies, we show here that efficient regeneration in younger axons (d45 in culture) is associated with local axonal protein synthesis (local translation). Enhanced regeneration, promoted by co-culture with human glial precursor cells, is associated with increased axonal synthesis of proteins, including those constituting the translation machinery itself. Reduced regeneration, as occurs with the maturation of these axons by d65 in culture, correlates with reduced levels of axonal proteins involved in translation and an inability to respond by increased translation of regeneration promoting axonal mRNAs released from stress granules. Together, our results provide evidence that, as in development and in the PNS, local translation contributes to CNS axon regeneration.


Asunto(s)
Axones/fisiología , Senescencia Celular/fisiología , Células Madre Embrionarias/fisiología , Regeneración Nerviosa/fisiología , Biosíntesis de Proteínas/fisiología , Técnicas de Cocultivo , Humanos
17.
Nat Rev Neurosci ; 22(2): 77-91, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33288912

RESUMEN

Axons extend for tremendously long distances from the neuronal soma and make use of localized mRNA translation to rapidly respond to different extracellular stimuli and physiological states. The locally synthesized proteins support many different functions in both developing and mature axons, raising questions about the mechanisms by which local translation is organized to ensure the appropriate responses to specific stimuli. Publications over the past few years have uncovered new mechanisms for regulating the axonal transport and localized translation of mRNAs, with several of these pathways converging on the regulation of cohorts of functionally related mRNAs - known as RNA regulons - that drive axon growth, axon guidance, injury responses, axon survival and even axonal mitochondrial function. Recent advances point to these different regulatory pathways as organizing platforms that allow the axon's proteome to be modulated to meet its physiological needs.


Asunto(s)
Transporte Axonal , ARN Mensajero , Animales , Humanos
18.
Curr Biol ; 30(24): 4882-4895.e6, 2020 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-33065005

RESUMEN

The main limitation on axon regeneration in the peripheral nervous system (PNS) is the slow rate of regrowth. We recently reported that nerve regeneration can be accelerated by axonal G3BP1 granule disassembly, releasing axonal mRNAs for local translation to support axon growth. Here, we show that G3BP1 phosphorylation by casein kinase 2α (CK2α) triggers G3BP1 granule disassembly in injured axons. CK2α activity is temporally and spatially regulated by local translation of Csnk2a1 mRNA in axons after injury, but this requires local translation of mTor mRNA and buffering of the elevated axonal Ca2+ that occurs after axotomy. CK2α's appearance in axons after PNS nerve injury correlates with disassembly of axonal G3BP1 granules as well as increased phospho-G3BP1 and axon growth, although depletion of Csnk2a1 mRNA from PNS axons decreases regeneration and increases G3BP1 granules. Phosphomimetic G3BP1 shows remarkably decreased RNA binding in dorsal root ganglion (DRG) neurons compared with wild-type and non-phosphorylatable G3BP1; combined with other studies, this suggests that CK2α-dependent G3BP1 phosphorylation on Ser 149 after axotomy releases axonal mRNAs for translation. Translation of axonal mRNAs encoding some injury-associated proteins is known to be increased with Ca2+ elevations, and using a dual fluorescence recovery after photobleaching (FRAP) reporter assay for axonal translation, we see that translational specificity switches from injury-associated protein mRNA translation to CK2α translation with endoplasmic reticulum (ER) Ca2+ release versus cytoplasmic Ca2+ chelation. Our results point to axoplasmic Ca2+ concentrations as a determinant for the temporal specificity of sequential translational activation of different axonal mRNAs as severed axons transition from injury to regenerative growth.


Asunto(s)
Axones/fisiología , Quinasa de la Caseína II/metabolismo , ADN Helicasas/metabolismo , Regeneración Nerviosa/genética , Traumatismos de los Nervios Periféricos/fisiopatología , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , ARN Helicasas/metabolismo , Proteínas con Motivos de Reconocimiento de ARN/metabolismo , Animales , Calcio/metabolismo , Quinasa de la Caseína II/genética , Gránulos Citoplasmáticos/metabolismo , ADN Helicasas/genética , Modelos Animales de Enfermedad , Retículo Endoplásmico/metabolismo , Ganglios Espinales/citología , Ganglios Espinales/lesiones , Ganglios Espinales/fisiología , Humanos , Masculino , Ratones , Ratones Noqueados , Modelos Animales , Traumatismos de los Nervios Periféricos/patología , Fosforilación , Proteínas de Unión a Poli-ADP-Ribosa/genética , Biosíntesis de Proteínas/fisiología , ARN Helicasas/genética , Proteínas con Motivos de Reconocimiento de ARN/genética , ARN Mensajero/metabolismo , Ratas , Serina-Treonina Quinasas TOR/genética
19.
Brain Res ; 1740: 146864, 2020 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-32360100

RESUMEN

Traumatic injury to the peripheral and central nervous systems very often causes axotomy, where an axon loses connections with its target resulting in loss of function. The axon segments distal to the injury site lose connection with the cell body and degenerate. Axotomized neurons in the periphery can spontaneously mount a regenerative response and reconnect to their denervated target tissues, though this is rarely complete in humans. In contrast, spontaneous regeneration rarely occurs after axotomy in the spinal cord and brain. Here, we concentrate on the mechanisms underlying this spontaneous regeneration in the peripheral nervous system, focusing on events initiated from the axon that support regenerative growth. We contrast this with what is known for axonal injury responses in the central nervous system. Considering the neuropathy focus of this special issue, we further draw parallels and distinctions between the injury-response mechanisms that initiate regenerative gene expression programs and those that are known to trigger axon degeneration.


Asunto(s)
Axones/patología , Axones/fisiología , Regeneración Nerviosa/fisiología , Animales , Axotomía/métodos , Axotomía/tendencias , Humanos , Enfermedades del Sistema Nervioso Periférico/genética , Enfermedades del Sistema Nervioso Periférico/fisiopatología , Enfermedades del Sistema Nervioso Periférico/terapia , ARN/genética , Traumatismos de la Médula Espinal/genética , Traumatismos de la Médula Espinal/fisiopatología , Traumatismos de la Médula Espinal/terapia
20.
Exp Neurol ; 323: 113072, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31669485

RESUMEN

Following injury, sensory axons locally translate mRNAs that encode proteins needed for the response to injury, locally and through retrograde signaling, and for regeneration. In this study, we addressed the mechanism and role of axotomy-induced intra-axonal translation of the ER chaperone Calreticulin. In vivo peripheral nerve injury increased Calreticulin levels in sensory axons. Using an in vitro model system of sensory neurons amenable to mechanistic dissection we provide evidence that axotomy induces local translation of Calreticulin through PERK (protein kinase RNA-like endoplasmic reticulum kinase) mediated phosphorylation of eIF2α by a mechanism that requires both 5' and 3'UTRs (untranslated regions) elements in Calreticulin mRNA. ShRNA mediated depletion of Calreticulin or inhibition of PERK signaling increased axon retraction following axotomy. In contrast, expression of axonally targeted, but not somatically restricted, Calreticulin mRNA decreased retraction and promoted axon regeneration following axotomy in vitro. Collectively, these data indicate that the intra-axonal translation of Calreticulin in response to axotomy serves to minimize the ensuing retraction, and overexpression of axonally targeted Calreticulin mRNA promotes axon regeneration.


Asunto(s)
Axones/fisiología , Calreticulina/metabolismo , Regeneración Nerviosa/fisiología , Traumatismos de los Nervios Periféricos/metabolismo , Animales , Axotomía , Masculino , Biosíntesis de Proteínas/fisiología , Ratas , Ratas Sprague-Dawley , eIF-2 Quinasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...