Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 178
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Oncotarget ; 15: 313-325, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38753413

RESUMEN

The diheteroarylamide-based compound 1C8 and the aminothiazole carboxamide-related compound GPS167 inhibit the CLK kinases, and affect the proliferation of a broad range of cancer cell lines. A chemogenomic screen previously performed with GPS167 revealed that the depletion of components associated with mitotic spindle assembly altered sensitivity to GPS167. Here, a similar screen performed with 1C8 also established the impact of components involved in mitotic spindle assembly. Accordingly, transcriptome analyses of cells treated with 1C8 and GPS167 indicated that the expression and RNA splicing of transcripts encoding mitotic spindle assembly components were affected. The functional relevance of the microtubule connection was confirmed by showing that subtoxic concentrations of drugs affecting mitotic spindle assembly increased sensitivity to GPS167. 1C8 and GPS167 impacted the expression and splicing of transcripts in pathways relevant to tumor progression, including MYC targets and the epithelial mesenchymal transition (EMT). Finally, 1C8 and GPS167 altered the expression and alternative splicing of transcripts involved in the antiviral immune response. Consistent with this observation, depleting the double-stranded RNA sensor DHX33 suppressed GPS167-mediated cytotoxicity on HCT116 cells. Our study uncovered molecular mechanisms through which 1C8 and GPS167 affect cancer cell proliferation as well as processes critical for metastasis.


Asunto(s)
Proliferación Celular , Transición Epitelial-Mesenquimal , Inhibidores de Proteínas Quinasas , Proteínas Tirosina Quinasas , Humanos , Transición Epitelial-Mesenquimal/efectos de los fármacos , Proteínas Tirosina Quinasas/metabolismo , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Proteínas Tirosina Quinasas/genética , Inhibidores de Proteínas Quinasas/farmacología , Proliferación Celular/efectos de los fármacos , Línea Celular Tumoral , Antineoplásicos/farmacología , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Tiazoles/farmacología , Antivirales/farmacología , Células HCT116 , ARN Helicasas DEAD-box/metabolismo , ARN Helicasas DEAD-box/genética , Perfilación de la Expresión Génica
2.
Mol Cell ; 83(22): 4078-4092.e6, 2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-37977119

RESUMEN

Tumor growth is driven by continued cellular growth and proliferation. Cyclin-dependent kinase 7's (CDK7) role in activating mitotic CDKs and global gene expression makes it therefore an attractive target for cancer therapies. However, what makes cancer cells particularly sensitive to CDK7 inhibition (CDK7i) remains unclear. Here, we address this question. We show that CDK7i, by samuraciclib, induces a permanent cell-cycle exit, known as senescence, without promoting DNA damage signaling or cell death. A chemogenetic genome-wide CRISPR knockout screen identified that active mTOR (mammalian target of rapamycin) signaling promotes samuraciclib-induced senescence. mTOR inhibition decreases samuraciclib sensitivity, and increased mTOR-dependent growth signaling correlates with sensitivity in cancer cell lines. Reverting a growth-promoting mutation in PIK3CA to wild type decreases sensitivity to CDK7i. Our work establishes that enhanced growth alone promotes CDK7i sensitivity, providing an explanation for why some cancers are more sensitive to CDK inhibition than normally growing cells.


Asunto(s)
Quinasas Ciclina-Dependientes , Neoplasias , Humanos , Quinasas Ciclina-Dependientes/genética , Quinasas Ciclina-Dependientes/metabolismo , Quinasa Activadora de Quinasas Ciclina-Dependientes , Transducción de Señal , Ciclo Celular , Inhibidores Enzimáticos , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Línea Celular Tumoral
3.
Cell Rep Methods ; 3(10): 100599, 2023 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-37797618

RESUMEN

For large libraries of small molecules, exhaustive combinatorial chemical screens become infeasible to perform when considering a range of disease models, assay conditions, and dose ranges. Deep learning models have achieved state-of-the-art results in silico for the prediction of synergy scores. However, databases of drug combinations are biased toward synergistic agents and results do not generalize out of distribution. During 5 rounds of experimentation, we employ sequential model optimization with a deep learning model to select drug combinations increasingly enriched for synergism and active against a cancer cell line-evaluating only ∼5% of the total search space. Moreover, we find that learned drug embeddings (using structural information) begin to reflect biological mechanisms. In silico benchmarking suggests search queries are ∼5-10× enriched for highly synergistic drug combinations by using sequential rounds of evaluation when compared with random selection or ∼3× when using a pretrained model.


Asunto(s)
Biología Computacional , Neoplasias , Humanos , Sinergismo Farmacológico , Biología Computacional/métodos , Combinación de Medicamentos , Neoplasias/tratamiento farmacológico
4.
Curr Opin Struct Biol ; 82: 102673, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37595512

RESUMEN

Quantitative characterization of protein abundance and interactions in live cells is necessary to understand and predict cellular behavior. The accurate determination of copy number for individual proteins and heterologous complexes in individual cells is critical because small changes in protein dosage, often less than two-fold, can have strong phenotypic consequences. Here, we review the merits and pitfalls of different quantitative fluorescence imaging methods for single-cell determination of protein abundance, localization, interactions, and dynamics. In particular, we discuss how scanning number and brightness (sN&B) and its variation, Raster scanning image correlation spectroscopy (RICS), exploit stochastic noise in small measurement volumes to quantify protein abundance, stoichiometry, and dynamics with high accuracy.


Asunto(s)
Imagen Óptica , Diferenciación Celular
5.
PLoS Genet ; 19(8): e1010903, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37639469

RESUMEN

Polo-like kinase 1 (PLK1) is a serine/threonine kinase required for mitosis and cytokinesis. As cancer cells are often hypersensitive to partial PLK1 inactivation, chemical inhibitors of PLK1 have been developed and tested in clinical trials. However, these small molecule inhibitors alone are not completely effective. PLK1 promotes numerous molecular and cellular events in the cell division cycle and it is unclear which of these events most crucially depend on PLK1 activity. We used a CRISPR-based genome-wide screening strategy to identify genes whose inactivation enhances cell proliferation defects upon partial chemical inhibition of PLK1. Genes identified encode proteins that are functionally linked to PLK1 in multiple ways, most notably factors that promote centromere and kinetochore function. Loss of the kinesin KIF18A or the outer kinetochore protein SKA1 in PLK1-compromised cells resulted in mitotic defects, activation of the spindle assembly checkpoint and nuclear reassembly defects. We also show that PLK1-dependent CENP-A loading at centromeres is extremely sensitive to partial PLK1 inhibition. Our results suggest that partial inhibition of PLK1 compromises the integrity and function of the centromere/kinetochore complex, rendering cells hypersensitive to different kinetochore perturbations. We propose that KIF18A is a promising target for combinatorial therapies with PLK1 inhibitors.


Asunto(s)
Proteínas de Ciclo Celular , Elementos de Facilitación Genéticos , Cinetocoros , Proteínas Serina-Treonina Quinasas , Proteínas de Ciclo Celular/genética , Proteínas Serina-Treonina Quinasas/genética , Humanos , Quinasa Tipo Polo 1
6.
Sci Rep ; 13(1): 3868, 2023 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-36890145

RESUMEN

Understanding the molecular pathology of neurodevelopmental disorders should aid the development of therapies for these conditions. In MeCP2 duplication syndrome (MDS)-a severe autism spectrum disorder-neuronal dysfunction is caused by increased levels of MeCP2. MeCP2 is a nuclear protein that binds to methylated DNA and recruits the nuclear co-repressor (NCoR) complex to chromatin via an interaction with the WD repeat-containing proteins TBL1 and TBLR1. The peptide motif in MeCP2 that binds to TBL1/TBLR1 is essential for the toxicity of excess MeCP2 in animal models of MDS, suggesting that small molecules capable of disrupting this interaction might be useful therapeutically. To facilitate the search for such compounds, we devised a simple and scalable NanoLuc luciferase complementation assay for measuring the interaction of MeCP2 with TBL1/TBLR1. The assay allowed excellent separation between positive and negative controls, and had low signal variance (Z-factor = 0.85). We interrogated compound libraries using this assay in combination with a counter-screen based on luciferase complementation by the two subunits of protein kinase A (PKA). Using this dual screening approach, we identified candidate inhibitors of the interaction between MeCP2 and TBL1/TBLR1. This work demonstrates the feasibility of future screens of large compound collections, which we anticipate will enable the development of small molecule therapeutics to ameliorate MDS.


Asunto(s)
Trastorno del Espectro Autista , Receptores Citoplasmáticos y Nucleares , Animales , Proteínas Represoras/genética , Luminiscencia , Proteína 2 de Unión a Metil-CpG/metabolismo , Proteínas Nucleares/metabolismo
7.
Cells ; 13(1)2023 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-38201261

RESUMEN

Increased nuclear size correlates with lower survival rates and higher grades for prostate cancer. The short-chain dehydrogenase/reductase (SDR) family member DHRS7 was suggested as a biomarker for use in prostate cancer grading because it is largely lost in higher-grade tumors. Here, we found that reduction in DHRS7 from the LNCaP prostate cancer cell line with normally high levels of DHRS7 increases nuclear size, potentially explaining the nuclear size increase observed in higher-grade prostate tumors where it is lost. An exogenous expression of DHRS7 in the PC3 prostate cancer cell line with normally low DHRS7 levels correspondingly decreases nuclear size. We separately tested 80 compounds from the Microsource Spectrum library for their ability to restore normal smaller nuclear size to PC3 cells, finding that estradiol propionate had the same effect as the re-expression of DHRS7 in PC3 cells. However, the drug had no effect on LNCaP cells or PC3 cells re-expressing DHRS7. We speculate that separately reported beneficial effects of estrogens in androgen-independent prostate cancer may only occur with the loss of DHRS7/ increased nuclear size, and thus propose DHRS7 levels and nuclear size as potential biomarkers for the likely effectiveness of estrogen-based treatments.


Asunto(s)
Estradiol , Neoplasias de la Próstata , Masculino , Humanos , Estradiol/farmacología , Propionatos , Neoplasias de la Próstata/tratamiento farmacológico , Próstata , Estrógenos , Oxidorreductasas
8.
Front Cell Dev Biol ; 10: 949382, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36393871

RESUMEN

The human body is programmed with definite quantities, magnitudes, and proportions. At the microscopic level, such definite sizes manifest in individual cells - different cell types are characterized by distinct cell sizes whereas cells of the same type are highly uniform in size. How do cells in a population maintain uniformity in cell size, and how are changes in target size programmed? A convergence of recent and historical studies suggest - just as a thermostat maintains room temperature - the size of proliferating animal cells is similarly maintained by homeostatic mechanisms. In this review, we first summarize old and new literature on the existence of cell size checkpoints, then discuss additional advances in the study of size homeostasis that involve feedback regulation of cellular growth rate. We further discuss recent progress on the molecules that underlie cell size checkpoints and mechanisms that specify target size setpoints. Lastly, we discuss a less-well explored teleological question: why does cell size matter and what is the functional importance of cell size control?

9.
Database (Oxford) ; 20222022 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-36197453

RESUMEN

The coronavirus disease 2019 (COVID-19) pandemic has compelled biomedical researchers to communicate data in real time to establish more effective medical treatments and public health policies. Nontraditional sources such as preprint publications, i.e. articles not yet validated by peer review, have become crucial hubs for the dissemination of scientific results. Natural language processing (NLP) systems have been recently developed to extract and organize COVID-19 data in reasoning systems. Given this scenario, the BioCreative COVID-19 text mining tool interactive demonstration track was created to assess the landscape of the available tools and to gauge user interest, thereby providing a two-way communication channel between NLP system developers and potential end users. The goal was to inform system designers about the performance and usability of their products and to suggest new additional features. Considering the exploratory nature of this track, the call for participation solicited teams to apply for the track, based on their system's ability to perform COVID-19-related tasks and interest in receiving user feedback. We also recruited volunteer users to test systems. Seven teams registered systems for the track, and >30 individuals volunteered as test users; these volunteer users covered a broad range of specialties, including bench scientists, bioinformaticians and biocurators. The users, who had the option to participate anonymously, were provided with written and video documentation to familiarize themselves with the NLP tools and completed a survey to record their evaluation. Additional feedback was also provided by NLP system developers. The track was well received as shown by the overall positive feedback from the participating teams and the users. Database URL: https://biocreative.bioinformatics.udel.edu/tasks/biocreative-vii/track-4/.


Asunto(s)
COVID-19 , COVID-19/epidemiología , Minería de Datos/métodos , Bases de Datos Factuales , Documentación , Humanos , Procesamiento de Lenguaje Natural
10.
J Cell Biol ; 221(11)2022 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-36305789

RESUMEN

Viruses co-opt host proteins to carry out their lifecycle. Repurposed host proteins may thus become functionally compromised; a situation analogous to a loss-of-function mutation. We term such host proteins as viral-induced hypomorphs. Cells bearing cancer driver loss-of-function mutations have successfully been targeted with drugs perturbing proteins encoded by the synthetic lethal (SL) partners of cancer-specific mutations. Similarly, SL interactions of viral-induced hypomorphs can potentially be targeted as host-based antiviral therapeutics. Here, we use GBF1, which supports the infection of many RNA viruses, as a proof-of-concept. GBF1 becomes a hypomorph upon interaction with the poliovirus protein 3A. Screening for SL partners of GBF1 revealed ARF1 as the top hit, disruption of which selectively killed cells that synthesize 3A alone or in the context of a poliovirus replicon. Thus, viral protein interactions can induce hypomorphs that render host cells selectively vulnerable to perturbations that leave uninfected cells otherwise unscathed. Exploiting viral-induced vulnerabilities could lead to broad-spectrum antivirals for many viruses, including SARS-CoV-2.


Asunto(s)
Factores de Intercambio de Guanina Nucleótido , Poliovirus , Proteínas del Núcleo Viral , Humanos , Factores de Intercambio de Guanina Nucleótido/metabolismo , Mutaciones Letales Sintéticas , Replicación Viral , Regulación Viral de la Expresión Génica , Proteínas del Núcleo Viral/genética , Proteínas del Núcleo Viral/metabolismo , Interacciones Huésped-Patógeno
11.
J Med Chem ; 65(19): 12725-12746, 2022 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-36117290

RESUMEN

Targeted protein degradation (TPD) strategies exploit bivalent small molecules to bridge substrate proteins to an E3 ubiquitin ligase to induce substrate degradation. Few E3s have been explored as degradation effectors due to a dearth of E3-binding small molecules. We show that genetically induced recruitment to the GID4 subunit of the CTLH E3 complex induces protein degradation. An NMR-based fragment screen followed by structure-guided analog elaboration identified two binders of GID4, 16 and 67, with Kd values of 110 and 17 µM in vitro. A parallel DNA-encoded library (DEL) screen identified five binders of GID4, the best of which, 88, had a Kd of 5.6 µM in vitro and an EC50 of 558 nM in cells with strong selectivity for GID4. X-ray co-structure determination revealed the basis for GID4-small molecule interactions. These results position GID4-CTLH as an E3 for TPD and provide candidate scaffolds for high-affinity moieties that bind GID4.


Asunto(s)
ADN , Ubiquitina-Proteína Ligasas , ADN/metabolismo , Humanos , Proteolisis , Ubiquitina-Proteína Ligasas/metabolismo
12.
Pept Sci (Hoboken) ; 114(3): e24254, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35864841

RESUMEN

Genetically-encoded cyclic peptide libraries allow rapid in vivo screens for inhibitors of any target protein of interest. In particular, the Split Intein Circular Ligation of Protein and Peptides (SICLOPPS) system exploits spontaneous protein splicing of inteins to produce intracellular cyclic peptides. A previous SICLOPPS screen against Aurora B kinase, which plays a critical role during chromosome segregation, identified several candidate inhibitors that we sought to recapitulate by chemical synthesis. We describe the syntheses of cyclic peptide hits and analogs via solution-phase macrocyclization of side chain-protected linear peptides obtained from standard solid-phase peptide synthesis. Cyclic peptide targets, including cyclo-[CTWAR], were designed to match both the variable portions and conserved cysteine residue of their genetically-encoded counterparts. Synthetic products were characterized by tandem high-resolution mass spectrometry to analyze a combination of exact mass, isotopic pattern, and collisional dissociation-induced fragmentation pattern. The latter analyses facilitated the distinction between targets and oligomeric side products, and served to confirm peptidic sequences in a manner that can be readily extended to analyses of complex biological samples. This alternative chemical synthesis approach for cyclic peptides allows cost-effective validation and facile chemical elaboration of hit candidates from SICLOPPS screens.

14.
PLoS Biol ; 20(3): e3001548, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35239649

RESUMEN

Commitment to cell division at the end of G1 phase, termed Start in the budding yeast Saccharomyces cerevisiae, is strongly influenced by nutrient availability. To identify new dominant activators of Start that might operate under different nutrient conditions, we screened a genome-wide ORF overexpression library for genes that bypass a Start arrest caused by absence of the G1 cyclin Cln3 and the transcriptional activator Bck2. We recovered a hypothetical gene YLR053c, renamed NRS1 for Nitrogen-Responsive Start regulator 1, which encodes a poorly characterized 108 amino acid microprotein. Endogenous Nrs1 was nuclear-localized, restricted to poor nitrogen conditions, induced upon TORC1 inhibition, and cell cycle-regulated with a peak at Start. NRS1 interacted genetically with SWI4 and SWI6, which encode subunits of the main G1/S transcription factor complex SBF. Correspondingly, Nrs1 physically interacted with Swi4 and Swi6 and was localized to G1/S promoter DNA. Nrs1 exhibited inherent transactivation activity, and fusion of Nrs1 to the SBF inhibitor Whi5 was sufficient to suppress other Start defects. Nrs1 appears to be a recently evolved microprotein that rewires the G1/S transcriptional machinery under poor nitrogen conditions.


Asunto(s)
Fase G1/genética , Regulación Fúngica de la Expresión Génica , Nitrógeno/metabolismo , Fase S/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Secuencia de Aminoácidos , División Celular/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Immunoblotting , Unión Proteica , RNA-Seq/métodos , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Homología de Secuencia de Aminoácido , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
15.
ACS Chem Biol ; 17(3): 680-700, 2022 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-35199530

RESUMEN

Background: Lower survival rates for many cancer types correlate with changes in nuclear size/scaling in a tumor-type/tissue-specific manner. Hypothesizing that such changes might confer an advantage to tumor cells, we aimed at the identification of commercially available compounds to guide further mechanistic studies. We therefore screened for Food and Drug Administration (FDA)/European Medicines Agency (EMA)-approved compounds that reverse the direction of characteristic tumor nuclear size changes in PC3, HCT116, and H1299 cell lines reflecting, respectively, prostate adenocarcinoma, colonic adenocarcinoma, and small-cell squamous lung cancer. Results: We found distinct, largely nonoverlapping sets of compounds that rectify nuclear size changes for each tumor cell line. Several classes of compounds including, e.g., serotonin uptake inhibitors, cyclo-oxygenase inhibitors, ß-adrenergic receptor agonists, and Na+/K+ ATPase inhibitors, displayed coherent nuclear size phenotypes focused on a particular cell line or across cell lines and treatment conditions. Several compounds from classes far afield from current chemotherapy regimens were also identified. Seven nuclear size-rectifying compounds selected for further investigation all inhibited cell migration and/or invasion. Conclusions: Our study provides (a) proof of concept that nuclear size might be a valuable target to reduce cell migration/invasion in cancer treatment and (b) the most thorough collection of tool compounds to date reversing nuclear size changes specific to individual cancer-type cell lines. Although these compounds still need to be tested in primary cancer cells, the cell line-specific nuclear size and migration/invasion responses to particular drug classes suggest that cancer type-specific nuclear size rectifiers may help reduce metastatic spread.


Asunto(s)
Adenocarcinoma , Neoplasias de la Próstata , Línea Celular Tumoral , Movimiento Celular , Humanos , Masculino , Invasividad Neoplásica/genética , Invasividad Neoplásica/prevención & control , Neoplasias de la Próstata/tratamiento farmacológico
16.
Blood Adv ; 6(2): 509-514, 2022 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-34731885

RESUMEN

Cholesterol homeostasis has been proposed as one mechanism contributing to chemoresistance in AML and hence, inclusion of statins in therapeutic regimens as part of clinical trials in AML has shown encouraging results. Chemical screening of primary human AML specimens by our group led to the identification of lipophilic statins as potent inhibitors of AMLs from a wide range of cytogenetic groups. Genetic screening to identify modulators of the statin response uncovered the role of protein geranylgeranylation and of RAB proteins, coordinating various aspect of vesicular trafficking, in mediating the effects of statins on AML cell viability. We further show that statins can inhibit vesicle-mediated transport in primary human specimens, and that statins sensitive samples show expression signatures reminiscent of enhanced vesicular trafficking. Overall, this study sheds light into the mechanism of action of statins in AML and identifies a novel vulnerability for cytogenetically diverse AML.


Asunto(s)
Inhibidores de Hidroximetilglutaril-CoA Reductasas , Leucemia Mieloide Aguda , Humanos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Inhibidores de Hidroximetilglutaril-CoA Reductasas/uso terapéutico , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética
17.
J Mol Biol ; 433(23): 167294, 2021 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-34662547

RESUMEN

Activating mutations in the epidermal growth factor receptor (EGFR) are common driver mutations in non-small cell lung cancer (NSCLC). First, second and third generation EGFR tyrosine kinase inhibitors (TKIs) are effective at inhibiting mutant EGFR NSCLC, however, acquired resistance is a major issue, leading to disease relapse. Here, we characterize a small molecule, EMI66, an analog of a small molecule which we previously identified to inhibit mutant EGFR signalling via a novel mechanism of action. We show that EMI66 attenuates receptor tyrosine kinase (RTK) expression and signalling and alters the electrophoretic mobility of Coatomer Protein Complex Beta 2 (COPB2) protein in mutant EGFR NSCLC cells. Moreover, we demonstrate that EMI66 can alter the subcellular localization of EGFR and COPB2 within the early secretory pathway. Furthermore, we find that COPB2 knockdown reduces the growth of mutant EGFR lung cancer cells, alters the post-translational processing of RTKs, and alters the endoplasmic reticulum (ER) stress response pathway. Lastly, we show that EMI66 treatment also alters the ER stress response pathway and inhibits the growth of mutant EGFR lung cancer cells and organoids. Our results demonstrate that targeting of COPB2 with EMI66 presents a viable approach to attenuate mutant EGFR signalling and growth in NSCLC.


Asunto(s)
Proteína Coatómero/genética , Proteína Coatómero/metabolismo , Descubrimiento de Drogas , Estrés del Retículo Endoplásmico/efectos de los fármacos , Estrés del Retículo Endoplásmico/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Proteínas Tirosina Quinasas Receptoras/genética , Descubrimiento de Drogas/métodos , Ensayos de Selección de Medicamentos Antitumorales , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/genética , Receptores ErbB/metabolismo , Humanos , Mutación , Inhibidores de Proteínas Quinasas/farmacología , Procesamiento Proteico-Postraduccional , Proteínas Tirosina Quinasas Receptoras/metabolismo , Transducción de Señal/efectos de los fármacos
18.
Sci Adv ; 7(44): eabi5797, 2021 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-34705497

RESUMEN

Pharmacological control of the ubiquitin-proteasome system (UPS) is of intense interest in drug discovery. Here, we report the development of chemical inhibitors of the ubiquitin-conjugating (E2) enzyme CDC34A (also known as UBE2R1), which donates activated ubiquitin to the cullin-RING ligase (CRL) family of ubiquitin ligase (E3) enzymes. A FRET-based interaction assay was used to screen for novel compounds that stabilize the noncovalent complex between CDC34A and ubiquitin, and thereby inhibit the CDC34A catalytic cycle. An isonipecotamide hit compound was elaborated into analogs with ~1000-fold increased potency in stabilizing the CDC34A-ubiquitin complex. These analogs specifically inhibited CDC34A-dependent ubiquitination in vitro and stabilized an E2~ubiquitin thioester reaction intermediate in cells. The x-ray crystal structure of a CDC34A-ubiquitin-inhibitor complex uncovered the basis for analog structure-activity relationships. The development of chemical stabilizers of the CDC34A-ubiquitin complex illustrates a general strategy for de novo discovery of molecular glue compounds that stabilize weak protein interactions.

19.
NAR Cancer ; 3(2): zcab019, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34316707

RESUMEN

The elevated expression of the splicing regulator SRSF10 in metastatic colorectal cancer (CRC) stimulates the production of the pro-tumorigenic BCLAF1-L splice variant. We discovered a group of small molecules with an aminothiazole carboxamide core (GPS167, GPS192 and others) that decrease production of BCLAF1-L. While additional alternative splicing events regulated by SRSF10 are affected by GPS167/192 in HCT116 cells (e.g. in MDM4, WTAP, SLK1 and CLK1), other events are shifted in a SRSF10-independent manner (e.g. in MDM2, NAB2 and TRA2A). GPS167/192 increased the interaction of SRSF10 with the CLK1 and CLK4 kinases, leading us to show that GPS167/192 can inhibit CLK kinases preferentially impacting the activity of SRSF10. Notably, GPS167 impairs the growth of CRC cell lines and organoids, inhibits anchorage-independent colony formation, cell migration, and promotes cytoxicity in a manner that requires SRSF10 and p53. In contrast, GPS167 only minimally affects normal colonocytes and normal colorectal organoids. Thus, GPS167 reprograms the tumorigenic activity of SRSF10 in CRC cells to elicit p53-dependent apoptosis.

20.
Aging Cell ; 20(4): e13331, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33660365

RESUMEN

Telomere erosion in cells with insufficient levels of the telomerase reverse transcriptase (TERT), contributes to age-associated tissue dysfunction and senescence, and p53 plays a crucial role in this response. We undertook a genome-wide CRISPR screen to identify gene deletions that sensitized p53-positive human cells to telomerase inhibition. We uncovered a previously unannotated gene, C16ORF72, which we term Telomere Attrition and p53 Response 1 (TAPR1), that exhibited a synthetic-sick relationship with TERT loss. A subsequent genome-wide CRISPR screen in TAPR1-disrupted cells reciprocally identified TERT as a sensitizing gene deletion. Cells lacking TAPR1 or TERT possessed elevated p53 levels and transcriptional signatures consistent with p53 upregulation. The elevated p53 response in TERT- or TAPR1-deficient cells was exacerbated by treatment with the MDM2 inhibitor and p53 stabilizer nutlin-3a and coincided with a further reduction in cell fitness. Importantly, the sensitivity to treatment with nutlin-3a in TERT- or TAPR1-deficient cells was rescued by loss of p53. These data suggest that TAPR1 buffers against the deleterious consequences of telomere erosion or DNA damage by constraining p53. These findings identify C16ORF72/TAPR1 as new regulator at the nexus of telomere integrity and p53 regulation.


Asunto(s)
Aminobenzoatos , Péptidos y Proteínas de Señalización Intercelular , Naftalenos , Leucemia-Linfoma Linfoblástico de Células Precursoras , Transducción de Señal , Telomerasa , Proteína p53 Supresora de Tumor , Humanos , Aminobenzoatos/farmacología , Línea Celular Tumoral , Daño del ADN/efectos de los fármacos , Técnicas de Inactivación de Genes , Imidazoles/farmacología , Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Naftalenos/farmacología , Piperazinas/farmacología , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/patología , Proteínas Proto-Oncogénicas c-mdm2/antagonistas & inhibidores , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Telomerasa/antagonistas & inhibidores , Telomerasa/genética , Telomerasa/metabolismo , Telómero/metabolismo , Transducción Genética , Proteína p53 Supresora de Tumor/metabolismo , Regulación hacia Arriba/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA