Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Phys Condens Matter ; 36(32)2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38701825

RESUMEN

Multiple software packages currently exist for the computation of bulk topological invariants in both idealized tight-binding models and realistic Wannier tight-binding models derived from density functional theory. Currently, only one package is capable of computing nested Wilson loops and spin-resolved Wilson loops. These state-of-the-art techniques are vital for accurate analysis of band topology. In this paper we introduce BerryEasy, a python package harnessing the speed of graphical processing units to allow for efficient topological analysis of supercells in the presence of disorder and impurities. Moreover, the BerryEasy package has built-in functionality to accommodate use of realistic many-band tight-binding models derived from first-principles.

2.
Sci Rep ; 14(1): 4288, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38383545

RESUMEN

In recent decades, the Altland-Zirnabuer (AZ) table has proven incredibly powerful in delineating constraints for topological classification of a given band-insulator based on dimension and (nonspatial) symmetry class, and has also been expanded by considering additional crystalline symmetries. Nevertheless, realizing a three-dimensional (3D), time-reversal symmetric (class AII) topological insulator (TI) in the absence of reflection symmetries, with a classification beyond the [Formula: see text] paradigm remains an open problem. In this work we present a general procedure for constructing such systems within the framework of projected topological branes (PTBs). In particular, a 3D projected brane from a "parent" four-dimensional topological insulator exhibits a [Formula: see text] topological classification, corroborated through its response to the inserted bulk monopole loop. More generally, PTBs have been demonstrated to be an effective route to performing dimensional reduction and embedding the topology of a [Formula: see text]-dimensional "parent" Hamiltonian in d dimensions, yielding lower-dimensional topological phases beyond the AZ classification without additional symmetries. Our findings should be relevant for the metamaterial platforms, such as photonic and phononic crystals, topolectric circuits, and designer systems.

3.
Sci Rep ; 13(1): 11393, 2023 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-37452078

RESUMEN

Multiple works suggest the possibility of classification of quantum spin Hall effect with magnetic flux tubes, which cause separation of spin and charge degrees of freedom and pumping of spin or Kramers-pair. However, the proof of principle demonstration of spin-charge separation is yet to be accomplished for realistic, ab initio band structures of spin-orbit-coupled materials, lacking spin-conservation law. In this work, we perform thought experiments with magnetic flux tubes on [Formula: see text]-bismuthene, and demonstrate spin-charge separation, and quantized pumping of spin for three insulating states, that can be accessed by tuning filling fractions. With a combined analysis of momentum-space topology and real-space response, we identify important role of bands supporting even integer invariants, which cannot be addressed with symmetry-based indicators. Our work sets a new standard for the computational diagnosis of two-dimensional, quantum spin-Hall materials by going beyond the [Formula: see text] paradigm and providing an avenue for precise determination of the bulk invariant through computation of quantized, real-space response.

4.
Inorg Chem ; 61(35): 13719-13727, 2022 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-35998562

RESUMEN

The metal thiophosphates (MTP), M2P2S6, are a versatile class of van der Waals materials, which are notable for the possibility of tuning their magnetic properties with the incorporation of different transition-metal cations. Further, they also offer opportunities to probe the independent and synergistic role of the magnetically active cation sublattice when coupled to P2Q6 polyhedra. Herein, we report the structural, magnetic, and electronic properties of the series of MTPs, MnxCo2-xP2S6 (x = 0.25, 0.5, 1, 1.5, 1.75) synthesized by the P2S5 flux method. Structural and elemental analysis indicates a homogeneous stoichiometry in the MnxCo2-xP2S6 compounds. We observe that a correlation is apparent between the intensities of specific Raman modes and Raman shifts with respect to the alloying ratio between Mn and Co. Magnetic susceptibility measurements indicate that the alloyed systems adopt an ordered antiferromagnetic (AFM) configuration with a dependence of the Néel temperature on the alloying ratio. A possible magnetic frustration behavior was observed for the composition MnCoP2S6 due to magnetic moment compensation as the alloying ratio between Mn and Co approaches parity. Interestingly, mixed oxidation states of the metal cation species are also observed in MnxCo2-xP2S6 along with a linear dependence of the work function on the alloying ratio of Mn and Co.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...