Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Immunol Cell Biol ; 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38650437

RESUMEN

The cells presented in this work are not classified as cells that make up the immune system. They, however, present functions and molecules, which are characteristic of immune cells. These characteristic functions are, for example, sensing threat, performing phagocytosis, presentation of foreign antigens, cytokine release or enhancing immune memory. The enlisted immune response mechanisms are carried out by the possession of molecules such as Toll-like receptors, receptors for the Fc fragment of IgG, major histocompatibility complex class II molecules, costimulatory CD80/CD86 proteins and molecules needed for NLRP3 (NOD-like family pyrin domain containing 3) inflammasome activation. Thanks to these properties, the described nonimmune cells play an important role in the local immune response and support of the entire body in the fight against pathogens. They constitute the first line of defense of tissues and organs against pathogens and molecules recognized as harmful. The cells described in this article are particularly important in immunologically privileged places (e.g. the Bowman's capsule in the kidney), where "typical" immune cells normally do not have access. In this paper, we present immune-like functions and molecule suites of resident kidney cells (podocytes and mesangial cells), cochlear resident cells, fibrocytes and fibroblasts, as well as some stem cells (mesenchymal stem cells and umbilical cord Wharton's jelly-derived cells).

2.
Biochem Biophys Res Commun ; 679: 145-159, 2023 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-37696068

RESUMEN

Podocytes are sensitive to insulin, which governs the functional and structural integrity of podocytes that are essential for proper function of the glomerular filtration barrier. Lysosomes are acidic organelles that are implicated in regulation of the insulin signaling pathway. Cathepsin D (CTPD) and lysosome-associated membrane protein 1 (LAMP1) are major lysosomal proteins that reflect the functional state of lysosomes. However, the effect of insulin on lysosome activity and role of lysosomes in the regulation of insulin-dependent glucose uptake in podocytes are unknown. Our studies showed that the short-term incubation of podocytes with insulin decreased LAMP1 and CTPD mRNA levels. Insulin and bafilomycin A1 reduced both the amounts of LAMP1 and CTPD proteins and activity of CTPD, which were associated with a decrease in the fluorescence intensity of lysosomes that were labeled with LysoTracker. Bafilomycin A1 inhibited insulin-dependent endocytosis of the insulin receptor and increased the amounts of the insulin receptor and glucose transporter 4 on the cell surface of podocytes. Bafilomycin A1 also inhibited insulin-dependent glucose uptake despite an increase in the amount of glucose transporter 4 in the plasma membrane of podocytes. These results suggest that lysosomes are signaling hubs that may be involved in the coupling of insulin signaling with the regulation of glucose uptake in podocytes. The dysregulation of this mechanism can lead to the dysfunction of podocytes and development of insulin resistance.


Asunto(s)
Podocitos , Ratas , Animales , Podocitos/metabolismo , Insulina/metabolismo , Receptor de Insulina/metabolismo , Factores de Transcripción/metabolismo , Lisosomas/metabolismo , Transducción de Señal , Glucosa/metabolismo , Proteínas Facilitadoras del Transporte de la Glucosa/metabolismo
3.
Int J Mol Sci ; 24(11)2023 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-37298666

RESUMEN

Sarcoidosis (SA) is a granulomatous disorder, which mostly affects the lungs. Its clinical characteristics resemble tuberculosis (TB), but its treatment is different. The etiology of SA is unknown; however, mycobacterial antigens were proposed as environmental factors in its development. Due to previously revealed immunocomplexemia with mycobacterial antigens in the blood of our SA but not TB patients, and in the search for biomarkers for differential diagnosis of the two disorders, we studied the phagocytic activity of monocytes from both patients' groups with flow cytometry. With the use of this method, we also analyzed the occurrence of receptors for IgG (FcγR) and complement components (CR) at the surface of these monocytes, responsible for phagocytosis of immunocomplexes. We revealed a higher phagocytic activity of monocytes in both disorders, but an increased frequency of monocytes with FcγRIII (CD16) and decreased with CR1 (CD35) receptor in the blood of SA vs. TB patients. With regard to our other genetic study on FcγRIII variants in SA and TB, this may account for the decreased clearance of immunocomplexes and different immune responses in the two diseases. Thus, the presented analysis not only sheds light on the pathomechanisms of SA and TB but may also support their differential diagnosis.


Asunto(s)
Sarcoidosis Pulmonar , Sarcoidosis , Tuberculosis , Humanos , Monocitos , Receptores de IgG , Receptores de Complemento , Fagocitosis
4.
J Cell Physiol ; 238(8): 1921-1936, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37269459

RESUMEN

Podocytes are crucially involved in blood filtration in the glomerulus. Their proper function relies on efficient insulin responsiveness. The insulin resistance of podocytes, defined as a reduction of cell sensitivity to this hormone, is the earliest pathomechanism of microalbuminuria that is observed in metabolic syndrome and diabetic nephropathy. In many tissues, this alteration is mediated by the phosphate homeostasis-controlling enzyme nucleotide pyrophosphatase/phosphodiesterase 1 (NPP1). By binding to the insulin receptor (IR), NPP1 inhibits downstream cellular signaling. Our previous research found that hyperglycemic conditions affect another protein that is involved in phosphate balance, type III sodium-dependent phosphate transporter 1 (Pit 1). In the present study, we evaluated the insulin resistance of podocytes after 24 h of incubation under hyperinsulinemic conditions. Thereafter, insulin signaling was inhibited. The formation of NPP1/IR complexes was observed at that time. A novel finding in the present study was our observation of an interaction between NPP1 and Pit 1 after the 24 h stimulation of podocytes with insulin. After downregulation of the SLC20A1 gene, which encodes Pit 1, we established insulin resistance in podocytes that were cultured under native conditions, manifested as a lack of intracellular insulin signaling and the inhibition of glucose uptake via the glucose transporter type 4. These findings suggest that Pit 1 might be a major factor that participates in the NPP1-mediated inhibition of insulin signaling.


Asunto(s)
Nefropatías Diabéticas , Resistencia a la Insulina , Podocitos , Humanos , Insulina/farmacología , Insulina/metabolismo , Podocitos/metabolismo , Hidrolasas Diéster Fosfóricas/genética , Hidrolasas Diéster Fosfóricas/metabolismo , Nefropatías Diabéticas/metabolismo , Fosfatos/metabolismo , Glucosa/metabolismo , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo III/metabolismo
5.
Cells ; 12(9)2023 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-37174624

RESUMEN

The clinical outcome of sarcoidosis (SA) is very similar to tuberculosis (TB); however, they are treated differently and should not be confused. In search for their biomarkers, we have previously revealed changes in the phagocytic activity of monocytes in sarcoidosis and tuberculosis. On these monocytes we found a higher expression of receptors for the Fc fragment of immunoglobulin G (FcγR) in SA and TB patients vs. healthy controls. FcγRs are responsible for the binding of immune complexes (ICs) to initiate an (auto)immune response and for ICs clearance. Surprisingly, our SA patients had a high blood level of ICs, despite the abundant presence of FcγRs. It pointed to FcγR disfunction, presumably caused by the polymorphism of their (FCGR) genes. Therefore, we present here an analysis of the occurrence of FCGR2A, FCGR2B, FCGR2C, FCGR3A and FCGR3B variants in Caucasian SA and TB patients, and healthy individuals with the use of polymerase chain reaction (PCR) and real-time PCR. The presented data point to a possibility of supporting the differential diagnosis of SA and TB by analyzing FCGR2C, FCGR3A and FCGR3B polymorphism, while for severe stages of SA also by studying FCGR2A variants. Additionally, the genotyping of FCGR2A and FCGR3B might serve as a marker of SA progression.


Asunto(s)
Receptores de IgG , Sarcoidosis Pulmonar , Tuberculosis , Humanos , Polimorfismo de Nucleótido Simple , Receptores de IgG/genética , Sarcoidosis Pulmonar/genética , Tuberculosis/genética
6.
Eur J Cell Biol ; 102(2): 151298, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36805821

RESUMEN

Lactate has long been acknowledged to be a metabolic waste product, but it has more recently been found as a fuel energy source in mammalian cells. Podocytes are an important component of the glomerular filter, and their role in maintaining the structural integrity of this structure was established. These cells rely on a constant energy supply and reservoir. The utilization of alternative energy substrates to preserve energetic homeostasis is a subject of extensive research, and lactate appears to be one such candidate. Therefore, we investigated the role of lactate as an energy substrate and characterize the lactate transport system in cultured rat podocytes during sufficient and insufficient glucose supplies. The present study, for the first time, demonstrated the presence of lactate transporters in podocytes. Moreover, we observed modified the amount of these transporters in response to limited glucose availability and after l-lactate supplementation. Simultaneously, exposure to l-lactate preserved cell survival during insufficient glucose supply. Interestingly, during glucose deprivation, lactate exposure allowed the steady flow of glycolysis and prevented glycogen reserves depletion. Summarizing, podocytes utilize lactate as an energy substrate and possess a developed system that controls lactate homeostasis, suggesting that it plays an essential role in podocyte metabolism, especially during fluctuations of energy availability.


Asunto(s)
Glucosa , Podocitos , Ratas , Animales , Glucosa/metabolismo , Podocitos/metabolismo , Glucólisis/fisiología , Ácido Láctico/metabolismo , Hipoxia de la Célula/fisiología , Mamíferos/metabolismo
7.
Biochim Biophys Acta Mol Cell Res ; 1869(9): 119301, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35642843

RESUMEN

Podocyte foot processes are an important cellular layer of the glomerular barrier that regulates glomerular permeability. Insulin via the protein kinase G type Iα (PKGIα) signaling pathway regulates the balance between contractility and relaxation (permeability) of the podocyte barrier by regulation of the actin cytoskeleton. This mechanism was shown to be disrupted in diabetes. Rho family guanosine-5'-triphosphates (GTPases) are dynamic modulators of the actin cytoskeleton and expressed in cells that form the glomerular filtration barrier. Thus, changes in Rho GTPase activity may affect glomerular permeability to albumin. The present study showed that Rho family GTPases control podocyte migration and permeability. Moreover these processes are regulated by insulin in PKGIα-dependent manner. Modulation of the PKGI-dependent activity of Rac1 and RhoA GTPases with inhibitors or small-interfering RNA impair glomerular permeability to albumin. We also demonstrated this mechanism in obese, insulin-resistant Zucker rats. We propose that PKGIα-Rac1-RhoA crosstalk is necessary in proper organization of the podocyte cytoskeleton and consequently the stabilization of glomerular architecture and regulation of filtration barrier permeability.


Asunto(s)
Proteína Quinasa Dependiente de GMP Cíclico Tipo I , Podocitos , Albúminas/metabolismo , Animales , Proteína Quinasa Dependiente de GMP Cíclico Tipo I/metabolismo , Citoesqueleto/metabolismo , Insulina/metabolismo , Permeabilidad , Podocitos/metabolismo , Ratas , Ratas Wistar , Ratas Zucker , Proteína de Unión al GTP rac1/metabolismo , Proteínas de Unión al GTP rho/metabolismo , Proteína de Unión al GTP rhoA/metabolismo
8.
Immunol Cell Biol ; 100(8): 591-604, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35771184

RESUMEN

Fcγ receptors (FcγRs) bind the Fc fragment of immunoglobulin G (IgG), mostly after IgG opsonizes a bacterial or viral antigen or danger/damage-associated molecule. Consequently, classic FcγRs initiate phagocytosis of the IgG-antigen immune complex and stimulate an immune reaction against the threat. Signals from activating FcγRs (FcγRI, FcγRIIa/c, FcγRIIIa/b) are balanced by inhibitory FcγRIIb and likely also by two FcR-like proteins (FCRL4 and FCRL5). The neonatal Fc receptor (FcRn) recirculates IgG and increases its half-life. The last FcγR that has been identified in humans, tripartite motif-containing protein 21 (TRIM21), acts toward pathogen destruction via the proteasomal or autophagic pathway. The expression of FcγRs occurs almost exclusively in immune cells. However, podocytes, key cells in the glomerular filtration barrier, also possess several features of an immune cell and express receptors for IgG. The presence of FcγRs in glomeruli was analyzed in the Human Protein Atlas project. FcγR occurrence in whole glomeruli or in particular resident kidney cells was also showed in a few original articles. In human podocytes only FcRn has been studied extensively, and the presence and role of other FcγRs remain obscure. Research on the genetic background of kidney diseases revealed a connection between FcγRs and several nephropathies. Investigations of FcγR expression in podocytes appear to be of great clinical importance. The present review discusses the latest literature on FcγRs in kidney cells (especially podocytes), with an emphasis on their involvement in kidney health and disease.


Asunto(s)
Fragmentos Fc de Inmunoglobulinas , Receptores de IgG , Complejo Antígeno-Anticuerpo/metabolismo , Proteínas Portadoras/metabolismo , Humanos , Fragmentos Fc de Inmunoglobulinas/genética , Inmunoglobulina G , Riñón/metabolismo , Receptores de IgG/metabolismo
9.
J Mol Med (Berl) ; 100(6): 903-915, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35534645

RESUMEN

Alterations of insulin signaling in diabetes are associated with podocyte injury, proteinuria, and renal failure. Insulin stimulates glucose transport to cells and regulates other intracellular processes that are linked to cellular bioenergetics, such as autophagy, gluconeogenesis, fatty acid metabolism, and mitochondrial homeostasis. The dysfunction of mitochondrial dynamics, including mitochondrial fusion, fission, and mitophagy, has been observed in high glucose-treated podocytes and renal cells from patients with diabetes. Previous studies showed that prolonged hyperglycemia is associated with the development of insulin resistance in podocytes, and high glucose-treated podocytes exhibit an increase in mitochondrial fission and decrease in markers of mitophagy. In the present study, we found that deficiency of the main mitophagy protein PTEN-induced kinase 1 (PINK1) significantly increased albumin permeability and hampered glucose uptake to podocytes. We suggest that PINK1 inhibition impairs the insulin signaling pathway, in which lower levels of phosphorylated Akt and membrane fractions of the insulin receptor and glucose transporter-4 were observed. Moreover, PINK1-depleted podocytes exhibited lower podocin and nephrin expression, thus identifying a potential mechanism whereby albumin leakage increases under hyperglycemic conditions when mitophagy is inhibited. In conclusion, we found that PINK1 plays an essential role in insulin signaling and the maintenance of proper permeability in podocytes. Therefore, PINK1 may be a potential therapeutic target for the treatment or prevention of diabetic nephropathy.


Asunto(s)
Nefropatías Diabéticas , Hiperglucemia , Podocitos , Proteínas Quinasas , Albúminas/metabolismo , Nefropatías Diabéticas/metabolismo , Glucosa/metabolismo , Humanos , Hiperglucemia/metabolismo , Insulina/metabolismo , Fosfohidrolasa PTEN/metabolismo , Permeabilidad , Podocitos/metabolismo , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Transducción de Señal
10.
J Cell Physiol ; 237(5): 2478-2491, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35150131

RESUMEN

Soft tissue calcification is a pathological phenomenon that often occurs in end-stage chronic kidney disease (CKD), which is caused by diabetic nephropathy, among other factors. Hyperphosphatemia present during course of CKD contributes to impairments in kidney function, particularly damages in the glomerular filtration barrier (GFB). Essential elements of the GFB include glomerular epithelial cells, called podocytes. In the present study, we found that human immortalized podocytes express messenger RNA and protein of phosphate transporters, including NaPi 2c (SLC34A3), Pit 1 (SLC20A1), and Pit 2 (SLC20A2), which are sodium-dependent and mediate intracellular phosphate (Pi) transport, and XPR1, which is responsible for extracellular Pi transport. We found that cells that were grown in a medium with a high glucose (HG) concentration (30 mM) expressed less Pit 1 and Pit 2 protein than podocytes that were cultured in a standard glucose medium (11 mM). We found that exposure of the analyzed transporters in the cell membrane of the podocyte is altered by HG conditions. We also found that the activity of tissue nonspecific alkaline phosphatase increased in HG, causing a rise in Pi generation. Additionally, HG led to a reduction of the amount of ectonucleotide pyrophosphatase/phosphodiesterase 1 in the cell membrane of podocytes. The extracellular concentration of pyrophosphate also decreased under HG conditions. These data suggest that a hyperglycemic environment enhances the production of Pi in podocytes and its retention in the extracellular space, which may induce glomerular calcification.


Asunto(s)
Calcinosis , Podocitos , Insuficiencia Renal Crónica , Calcinosis/metabolismo , Glucosa/metabolismo , Humanos , Glomérulos Renales/metabolismo , Proteínas de Transporte de Fosfato/genética , Proteínas de Transporte de Fosfato/metabolismo , Podocitos/metabolismo , Insuficiencia Renal Crónica/patología , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo III/genética , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo III/metabolismo
11.
Int J Mol Sci ; 22(15)2021 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-34360633

RESUMEN

Hyperglycemic conditions (HG), at early stages of diabetic nephropathy (DN), cause a decrease in podocyte numbers and an aberration of their function as key cells for glomerular plasma filtration. Klotho protein was shown to overcome some negative effects of hyperglycemia. Klotho is also a coreceptor for fibroblast growth factor receptors (FGFRs), the signaling of which, together with a proper rate of glycolysis in podocytes, is needed for a proper function of the glomerular filtration barrier. Therefore, we measured levels of Klotho in renal tissue, serum, and urine shortly after DN induction. We investigated whether it influences levels of FGFRs, rates of glycolysis in podocytes, and albumin permeability. During hyperglycemia, the level of membrane-bound Klotho in renal tissue decreased, with an increase in the shedding of soluble Klotho, its higher presence in serum, and lower urinary excretion. The addition of Klotho increased FGFR levels, especially FGFR1/FGFR2, after their HG-induced decrease. Klotho also increased levels of glycolytic parameters of podocytes, and decreased podocytic and glomerular albumin permeability in HG. Thus, we found that the decrease in the urinary excretion of Klotho might be an early biomarker of DN and that Klotho administration may have several beneficial effects on renal function in DN.


Asunto(s)
Glucuronidasa/metabolismo , Hiperglucemia/metabolismo , Podocitos/metabolismo , Receptores de Factores de Crecimiento de Fibroblastos/metabolismo , Animales , Glucólisis , Proteínas Klotho , Masculino , Permeabilidad , Ratas Wistar
12.
Exp Cell Res ; 407(1): 112758, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34437881

RESUMEN

Podocytes constitute the outer layer of the renal glomerular filtration barrier. Their energy requirements strongly depend on efficient oxidative respiration, which is tightly connected with mitochondrial dynamics. We hypothesized that hyperglycemia modulates energy metabolism in glomeruli and podocytes and contributes to the development of diabetic kidney disease. We found that oxygen consumption rates were severely reduced in glomeruli from diabetic rats and in human podocytes that were cultured in high glucose concentration (30 mM; HG). In these models, all of the mitochondrial respiratory parameters, including basal and maximal respiration, ATP production, and spare respiratory capacity, were significantly decreased. Podocytes that were treated with HG showed a fragmented mitochondrial network, together with a decrease in expression of the mitochondrial fusion markers MFN1, MFN2, and OPA1, and an increase in the activity of the fission marker DRP1. We showed that markers of mitochondrial biogenesis, such as PGC-1α and TFAM, decreased in HG-treated podocytes. Moreover, PINK1/parkin-dependent mitophagy was inhibited in these cells. These results provide evidence that hyperglycemia impairs mitochondrial dynamics and turnover, which may underlie the remarkable deterioration of mitochondrial respiration parameters in glomeruli and podocytes.


Asunto(s)
Hiperglucemia/metabolismo , Mitocondrias/metabolismo , Mitofagia/fisiología , Podocitos/metabolismo , Animales , Diabetes Mellitus Experimental/metabolismo , Humanos , Riñón/metabolismo , Masculino , Proteínas Quinasas/metabolismo , Ratas Wistar , Especies Reactivas de Oxígeno/metabolismo
13.
Arch Biochem Biophys ; 709: 108985, 2021 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-34252390

RESUMEN

The protein deacetylase sirtuin 1 (SIRT1) and adenosine monophosphate-dependent protein kinase (AMPK) play important roles in the development of insulin resistance. In glomerular podocytes, crosstalk between these two enzymes may be altered under hyperglycemic conditions. SIRT1 protein levels and activity and AMPK phosphorylation decrease under hyperglycemic conditions, with concomitant inhibition of the effect of insulin on glucose uptake into these cells. Nitric oxide (NO)-dependent regulatory signaling pathways have been shown to be downregulated under diabetic conditions. The present study examined the involvement of the NO synthase (NOS)/NO pathway in the regulation of SIRT1-AMPK signaling and glucose uptake in podocytes. We examined the effects of NOS/NO pathway alterations on SIRT1/AMPK signaling and glucose uptake using pharmacological tools and a small-interfering transfection approach. We also examined the ability of the NOS/NO pathway to protect podocytes against high glucose-induced alterations of SIRT1/AMPK signaling and insulin-dependent glucose uptake. Inhibition of the NOS/NO pathway reduced SIRT1 protein levels and activity, leading to a decrease in AMPK phosphorylation and blockade of the effect of insulin on glucose uptake. Treatment with the NO donor S-nitroso-N-acetylpenicillamine (SNAP) prevented high glucose-induced decreases in SIRT1 and AMPK activity and increased GLUT4 protein expression, thereby improving glucose uptake in podocytes. These findings suggest that inhibition of the NOS/NO pathway may result in alterations of the effects of insulin on glucose uptake in podocytes. In turn, the enhancement of NOS/NO pathway activity may prevent these deleterious effects of high glucose concentrations, thus bidirectionally stimulating the SIRT1-AMPK reciprocal activation loop.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Glucosa/metabolismo , Óxido Nítrico Sintasa de Tipo I/metabolismo , Óxido Nítrico/metabolismo , Podocitos/metabolismo , Sirtuina 1/metabolismo , Animales , Regulación hacia Abajo/fisiología , Inhibidores Enzimáticos/farmacología , Técnicas de Silenciamiento del Gen , Transportador de Glucosa de Tipo 4/metabolismo , Insulina/metabolismo , Resistencia a la Insulina/fisiología , NG-Nitroarginina Metil Éster/farmacología , Óxido Nítrico Sintasa de Tipo I/antagonistas & inhibidores , Fosforilación/efectos de los fármacos , Ratas , S-Nitroso-N-Acetilpenicilamina/farmacología , Transducción de Señal , Sirtuina 1/genética
14.
Int J Mol Sci ; 22(2)2021 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-33478014

RESUMEN

Klotho was initially introduced as an antiaging molecule. Klotho deficiency significantly reduces lifespan, and its overexpression extends it and protects against various pathological phenotypes, especially renal disease. It was shown to regulate phosphate and calcium metabolism, protect against oxidative stress, downregulate apoptosis, and have antiinflammatory and antifibrotic properties. The course of diabetes mellitus and diabetic nephropathy resembles premature cellular senescence and causes the activation of various proinflammatory and profibrotic processes. Klotho was shown to exert many beneficial effects in these disorders. The expression of Klotho protein is downregulated in early stages of inflammation and diabetic nephropathy by proinflammatory factors. Therefore, its therapeutic effects are diminished in this disorder. Significantly lower urine levels of Klotho may serve as an early biomarker of renal involvement in diabetes mellitus. Recombinant Klotho administration and Klotho overexpression may have immunotherapeutic potential for the treatment of both diabetes and diabetic nephropathy. Therefore, the current manuscript aims to characterize immunopathologies occurring in diabetes and diabetic nephropathy, and tries to match them with antiinflammatory actions of Klotho. It also gives reasons for Klotho to be used in diagnostics and immunotherapy of these disorders.


Asunto(s)
Nefropatías Diabéticas/terapia , Glucuronidasa/fisiología , Inflamación/prevención & control , Animales , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Senescencia Celular/genética , Nefropatías Diabéticas/diagnóstico , Nefropatías Diabéticas/genética , Glucuronidasa/farmacología , Glucuronidasa/uso terapéutico , Humanos , Inflamación/diagnóstico , Inflamación/etiología , Inflamación/terapia , Proteínas Klotho , Sustancias Protectoras/farmacología , Sustancias Protectoras/uso terapéutico
15.
J Cell Physiol ; 236(6): 4655-4668, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33244808

RESUMEN

Insulin plays a major role in regulating glucose homeostasis in podocytes. Protein kinase G type Iα (PKGIα) plays an important role in regulating glucose uptake in these cells. Rac1 signaling plays an essential role in the reorganization of the actin cytoskeleton and is also essential for insulin-stimulated glucose transport. The experiments were conducted using primary rat podocytes. We performed western blot analysis, evaluated small GTPases activity assays, measured radioactive glucose uptake, and performed immunofluorescence imaging to analyze the role of PKGIα-Rac1 signaling in regulating podocyte function. We also utilized a small-interfering RNA-mediated approach to determine the role of PKGIα and Rac1 in regulating glucose uptake in podocytes. The present study investigated the influence of the PKGI pathway on the insulin-dependent regulation of activity and cellular localization of small guanosine triphosphatases in podocytes. We found that the PKGIα-dependent activation of Rac1 signaling induced activation of the PAK/cofilin pathway and increased insulin-mediated glucose uptake in podocytes. The downregulation of PKGIα or Rac1 expression abolished this effect. Rac1 silencing prevented actin remodeling and GLUT4 translocation close to the cell membrane. These data provide evidence that PKGIα-dependent activation of the Rac1 signaling pathways is a novel regulator of insulin-mediated glucose uptake in cultured rat podocytes.


Asunto(s)
Proteína Quinasa Dependiente de GMP Cíclico Tipo I/metabolismo , Transportador de Glucosa de Tipo 4/metabolismo , Glucosa/metabolismo , Hipoglucemiantes/farmacología , Insulina/farmacología , Podocitos/efectos de los fármacos , Proteína de Unión al GTP rac1/metabolismo , Citoesqueleto de Actina/metabolismo , Factores Despolimerizantes de la Actina/metabolismo , Animales , Células Cultivadas , Proteína Quinasa Dependiente de GMP Cíclico Tipo I/genética , Femenino , Podocitos/enzimología , Transporte de Proteínas , Ratas Wistar , Transducción de Señal , Quinasas p21 Activadas/metabolismo , Proteína de Unión al GTP rac1/genética
16.
Biochim Biophys Acta Mol Cell Res ; 1867(8): 118723, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32302668

RESUMEN

A growing body of evidence suggests a role of proteolytic enzymes in the development of diabetic nephropathy. Cathepsin C (CatC) is a well-known regulator of inflammatory responses, but its involvement in podocyte and renal injury remains obscure. We used Zucker rats, a genetic model of metabolic syndrome and insulin resistance, to determine the presence, quantity, and activity of CatC in the urine. In addition to the animal study, we used two cellular models, immortalized human podocytes and primary rat podocytes, to determine mRNA and protein expression levels via RT-PCR, Western blot, and confocal microscopy, and to evaluate CatC activity. The role of CatC was analyzed in CatC-depleted podocytes using siRNA and glycolytic flux parameters were obtained from extracellular acidification rate (ECAR) measurements. In functional analyses, podocyte and glomerular permeability to albumin was determined. We found that podocytes express and secrete CatC, and a hyperglycemic environment increases CatC levels and activity. Both high glucose and non-specific activator of CatC phorbol 12-myristate 13-acetate (PMA) diminished nephrin, cofilin, and GLUT4 levels and induced cytoskeletal rearrangements, increasing albumin permeability in podocytes. These negative effects were completely reversed in CatC-depleted podocytes. Moreover, PMA, but not high glucose, increased glycolytic flux in podocytes. Finally, we demonstrated that CatC expression and activity are increased in the urine of diabetic Zucker rats. We propose a novel mechanism of podocyte injury in diabetes, providing deeper insight into the role of CatC in podocyte biology.


Asunto(s)
Catepsina C/metabolismo , Hiperglucemia/metabolismo , Riñón/lesiones , Riñón/metabolismo , Podocitos/metabolismo , Animales , Catepsina C/genética , Nefropatías Diabéticas/metabolismo , Nefropatías Diabéticas/patología , Modelos Animales de Enfermedad , Femenino , Técnicas de Silenciamiento del Gen , Glucosa/metabolismo , Humanos , Resistencia a la Insulina , Riñón/patología , Proteínas de la Membrana , Síndrome Metabólico , Obesidad , Permeabilidad , ARN Mensajero , Ratas , Ratas Zucker , Albúmina Sérica/metabolismo , Transcriptoma
17.
PLoS One ; 12(5): e0177194, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28472129

RESUMEN

We have previously revealed that, in contrast to polymorphism of FCGR2B and FCGR3B, polymorphism of FCGR2A, FCGR2C and FCGR3A genes, encoding receptors for Fc fragment of immunoglobulin G (Fcγ receptors), play a role in increased level of circulating immune complexes with occurrence of Mycobacterium tuberculosis heat shock proteins in patients with sarcoidosis. However, this immunocomplexemia might also be caused by decreased clearance by immune cells due to a changed copy number of FCGR genes. Thus, the next step of our study was to evaluate copy number variation of FCGR2A, FCGR2B, FCGR2C, FCGR3A and FCGR3B in this disease. The analysis was carried out by real-time quantitative PCR on 104 patients and 110 healthy volunteers. Despite previously detected variation in allele/genotype frequencies of FCGR in sarcoidosis and its particular stages, there was no copy number variation of the tested genes between sarcoidosis or its stages and healthy control, as well as between stages themselves. A relevant increase in copy number of FCGR2C and FCGR3B in Stage IV of sarcoidosis vs. other stages and controls was detected, but this observation was based on a limited number of Stage IV patients. Hence, polymorphism of FCGR genes seems to be more important than their copy number variation in etiopathogenesis of sarcoidosis in patients from the Polish population.


Asunto(s)
Variaciones en el Número de Copia de ADN , Predisposición Genética a la Enfermedad , Receptores de IgG/genética , Sarcoidosis/genética , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven
18.
Hum Immunol ; 75(4): 283-8, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24530756

RESUMEN

We showed increased level of immune complexes (ICs) with mycobacterial heat shock proteins (Mtb-hsp) and increased expression of receptors for Fc fragment of immunoglobulin G (FcγR) I-III on blood monocytes with their increased phagocytic activity, responsible for clearance of these ICs in sarcoidosis (SA). Since FcγRIIIa is the most crucial in this process, we genotyped 77 SA patients and 143 healthy controls with polymerase chain reaction for V158F polymorphism of FCGR3A gene, encoding FcγRIIIa. We revealed significantly higher percentage of 158F and 158FF and lower of 158FV variants in Stage I of SA versus controls. Conversely, in Stage II of SA, we found increase in 158VV homozygotes versus controls. We also showed significant increase of 158F and 158FF variants in Stage I vs II and of 158V in Stage II vs I. Therefore, in Stage I, 158F allele may cause decreased FcγRIIIa affinity and clearance of ICs, whereas in Stage II, 158V allele may cause effective FcγRIIIa affinity to ICs with e.g. mycobacteria, their phagocytosis, Mtb-hsp secretion with ICs formation, Mtb-hsp epitope spread and subsequent immune reaction. Thus, V158F polymorphism of FCGR3A may explain the immunocomplexemia in our patients and might serve as prognostic marker of clinical course of sarcoidosis.


Asunto(s)
Polimorfismo Genético , Receptores de IgG/genética , Sarcoidosis/genética , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Alelos , Estudios de Casos y Controles , Femenino , Frecuencia de los Genes , Genotipo , Humanos , Masculino , Persona de Mediana Edad , Oportunidad Relativa , Sarcoidosis/inmunología , Sarcoidosis/patología , Adulto Joven
19.
Expert Rev Clin Immunol ; 9(4): 349-60, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23557270

RESUMEN

Pathological similarities between sarcoidosis (SA) and tuberculosis (TB) suggest that mycobacterial antigen(s), in genetically different predisposed hosts, may be a cause of SA. The authors' work and other published comparative analyses of HLA and non-HLA alleles in patients with SA or TB from different ethnic groups in the world revealed that some antigens were connected with high risk of SA or TB development, but others were comparable in both patient populations. The authors also showed a possibility of predominant occurrence of HLA alleles characteristic for TB as a cause of TB in patients with SA on corticosteroid therapy. It is possible that an analysis of SA and TB patient's genetic background may be helpful for protection from TB in SA patients on corticosteroids, especially on anti-TNF-α treatment. The authors suggest that the consideration of an immunosuppressive therapy in SA patients will need more attention and individual therapy based on genotyping study.


Asunto(s)
Mycobacterium/inmunología , Sarcoidosis/genética , Tuberculosis/genética , Corticoesteroides/uso terapéutico , Animales , Etnicidad , Predisposición Genética a la Enfermedad , Genotipo , Antígenos HLA/genética , Humanos , Mycobacterium/patogenicidad , Polimorfismo Genético , Medicina de Precisión , Sarcoidosis/complicaciones , Sarcoidosis/tratamiento farmacológico , Sarcoidosis/inmunología , Tuberculosis/complicaciones , Tuberculosis/tratamiento farmacológico , Tuberculosis/inmunología , Factor de Necrosis Tumoral alfa/antagonistas & inhibidores
20.
Hum Immunol ; 73(8): 788-94, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22609476

RESUMEN

We have recently revealed that mycobacterial heat shock proteins (Mtb-hsp), involved in forming of immune complexes (CIs), can induce immune response in sarcoidosis (SA). The complexemia may result from inappropriate phagocytosis and clearance of CIs by monocytes with following persistent antigenemia and granuloma formation. Because an aberrant expression of receptors for Fc fragment of immunoglobulin G (FcγR) and complement receptors (CR) on monocytes can be involved in this process, we have evaluated the expression of FcγRI (CD64), FcγRII (CD32), FcγRIII (CD16) and CR1 (CD35), CR3 (CD11b), CR4 (CD11c) receptors on blood CD14(+) monocytes and its phagocytic activity in 24 patients with SA and 20 healthy volunteers using flow cytometry. We found significantly increased expression of all examined FcγR and decreased expression of CD35 and CD11c on CD14(+) monocytes in SA patients vs controls. Significantly increased percentage of CD14(+)CD16(+)CD35(-), CD14(+)CD64(+)CD35(+), CD14(+)CD64(+)CD11b(+), CD14(+)CD64(+)CD11c(+) and decreased of CD14(+)CD32(-)CD35(+), CD14(+)CD32(-)CD11b(+), CD14(+)CD32(-)CD11c(+) monocytes' phenotypes was revealed in SA. The total number and percentage of phagocyting monocytes was significantly increased in SA as compared with controls. In conclusion, altered expression of FcγR and CR on CD14(+) monocytes and its increased phagocytic activity may be responsible for high antigen load, persistent antigenemia and immunocomplexemia in SA patients.


Asunto(s)
Complejo Antígeno-Anticuerpo/inmunología , Monocitos/inmunología , Receptores de Complemento/inmunología , Receptores de IgG/inmunología , Sarcoidosis/inmunología , Adulto , Complejo Antígeno-Anticuerpo/sangre , Antígenos CD/sangre , Antígenos CD/genética , Antígenos CD/inmunología , Estudios de Casos y Controles , Recuento de Células , Femenino , Citometría de Flujo , Expresión Génica , Humanos , Inmunofenotipificación , Masculino , Persona de Mediana Edad , Monocitos/metabolismo , Monocitos/patología , Fagocitosis/inmunología , Receptores de Complemento/sangre , Receptores de IgG/sangre , Sarcoidosis/sangre , Sarcoidosis/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA