Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38645166

RESUMEN

Islet transplantation for treatment of diabetes is limited by availability of donor islets and requirements for immunosuppression. Stem cell-derived islets might circumvent these issues. SC-islets effectively control glucose metabolism post transplantation, but do not yet achieve full function in vitro with current published differentiation protocols. We aimed to identify markers of mature subpopulations of SC-ß cells by studying transcriptional changes associated with in vivo maturation of SC-ß cells using RNA-seq and co-expression network analysis. The ß cell-specific hormone islet amyloid polypeptide (IAPP) emerged as the top candidate to be such a marker. IAPP+ cells had more mature ß cell gene expression and higher cellular insulin content than IAPP- cells in vitro. IAPP+ INS+ cells were more stable in long-term culture than IAPP- INS+ cells and retained insulin expression after transplantation into mice. Finally, we conducted a small molecule screen to identify compounds that enhance IAPP expression. Aconitine up-regulated IAPP and could help to optimize differentiation protocols.

2.
Diabetologia ; 65(6): 1018-1031, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35325259

RESUMEN

AIM/HYPOTHESIS: Urocortin-3 (UCN3) is a glucoregulatory peptide produced in the gut and pancreatic islets. The aim of this study was to clarify the acute effects of UCN3 on glucose regulation following an oral glucose challenge and to investigate the mechanisms involved. METHODS: We studied the effect of UCN3 on blood glucose, gastric emptying, glucose absorption and secretion of gut and pancreatic hormones in male rats. To supplement these physiological studies, we mapped the expression of UCN3 and the UCN3-sensitive receptor, type 2 corticotropin-releasing factor receptor (CRHR2), by means of fluorescence in situ hybridisation and by gene expression analysis. RESULTS: In rats, s.c. administration of UCN3 strongly inhibited gastric emptying and glucose absorption after oral administration of glucose. Direct inhibition of gastrointestinal motility may be responsible because UCN3's cognate receptor, CRHR2, was detected in gastric submucosal plexus and in interstitial cells of Cajal. Despite inhibited glucose absorption, post-challenge blood glucose levels matched those of rats given vehicle in the low-dose UCN3 group, because UCN3 concomitantly inhibited insulin secretion. Higher UCN3 doses did not further inhibit gastric emptying, but the insulin inhibition progressed resulting in elevated post-challenge glucose and lipolysis. Incretin hormones and somatostatin (SST) secretion from isolated perfused rat small intestine was unaffected by UCN3 infusion; however, UCN3 infusion stimulated secretion of somatostatin from delta cells in the isolated perfused rat pancreas which, unlike alpha cells and beta cells, expressed Crhr2. Conversely, acute antagonism of CRHR2 signalling increased insulin secretion by reducing SST signalling. Consistent with these observations, acute drug-induced inhibition of CRHR2 signalling improved glucose tolerance in rats to a similar degree as administration of glucagon-like peptide-1. UCN3 also powerfully inhibited glucagon secretion from isolated perfused rat pancreas (perfused with 3.5 mmol/l glucose) in a SST-dependent manner, suggesting that UCN3 may be involved in glucose-induced inhibition of glucagon secretion. CONCLUSIONS/INTERPRETATION: Our combined data indicate that UCN3 is an important glucoregulatory hormone that acts through regulation of gastrointestinal and pancreatic functions.


Asunto(s)
Islotes Pancreáticos , Urocortinas , Animales , Glucemia/metabolismo , Glucagón/metabolismo , Glucosa/metabolismo , Insulina/metabolismo , Islotes Pancreáticos/metabolismo , Masculino , Ratas , Somatostatina/metabolismo , Urocortinas/metabolismo
3.
Biomedicines ; 10(2)2022 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-35203411

RESUMEN

Dapagliflozin is a sodium-glucose co-transporter 2 (SGLT2) inhibitor used for the treatment of diabetes. This study examines the effects of dapagliflozin on human islets, focusing on alpha and beta cell composition in relation to function in vivo, following treatment of xeno-transplanted diabetic mice. Mouse beta cells were ablated by alloxan, and dapagliflozin was provided in the drinking water while controls received tap water. Body weight, food and water intake, plasma glucose, and human C-peptide levels were monitored, and intravenous arginine/glucose tolerance tests (IVarg GTT) were performed to evaluate islet function. The grafted human islets were isolated at termination and stained for insulin, glucagon, Ki67, caspase 3, and PDX-1 immunoreactivity in dual and triple combinations. In addition, human islets were treated in vitro with dapagliflozin at different glucose concentrations, followed by insulin and glucagon secretion measurements. SGLT2 inhibition increased the animal survival rate and reduced plasma glucose, accompanied by sustained human C-peptide levels and improved islet response to glucose/arginine. SGLT2 inhibition increased both alpha and beta cell proliferation (Ki67+glucagon+ and Ki67+insulin+) while apoptosis was reduced (caspase3+glucagon+ and caspase3+insulin+). Alpha cells were fewer following inhibition of SGLT2 with increased glucagon/PDX-1 double-positive cells, a marker of alpha to beta cell transdifferentiation. In vitro treatment of human islets with dapagliflozin had no apparent impact on islet function. In summary, SGLT2 inhibition supported human islet function in vivo in the hyperglycemic milieu and potentially promoted alpha to beta cell transdifferentiation, most likely through an indirect mechanism.

4.
Biomedicines ; 10(1)2022 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-35052799

RESUMEN

BACKGROUND: Saccharin is a common artificial sweetener and a bona fide ligand for sweet taste receptors (STR). STR can regulate insulin secretion in beta cells, so we investigated whether saccharin can stimulate insulin secretion dependent on STR and the activation of phospholipase C (PLC) signaling. METHODS: We performed in vivo and in vitro approaches in mice and cells with loss-of-function of STR signaling and specifically assessed the involvement of a PLC signaling cascade using real-time biosensors and calcium imaging. RESULTS: We found that the ingestion of a physiological amount of saccharin can potentiate insulin secretion dependent on STR. Similar to natural sweeteners, saccharin triggers the activation of the PLC signaling cascade, leading to calcium influx and the vesicular exocytosis of insulin. The effects of saccharin also partially require transient receptor potential cation channel M5 (TRPM5) activity. CONCLUSIONS: Saccharin ingestion may transiently potentiate insulin secretion through the activation of the canonical STR signaling pathway. These physiological effects provide a framework for understanding the potential health impact of saccharin use and the contribution of STR in peripheral tissues.

5.
Biochim Biophys Acta Mol Basis Dis ; 1867(10): 166199, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34144091

RESUMEN

During diabetes development insulin production and glucose-stimulated insulin secretion (GSIS) are defective due to inflammation-related, yet not fully understood mechanisms. MCPIP1 (monocyte chemotactic protein-induced protein-1) is a strong regulator of inflammation, and acts predominantly as a specific RNase. The impact of MCPIP1 on insulin secretory capacity is unknown. We show that the expression of the ZC3H12A gene, which encodes MCPIP1, was induced by T1DM- and by T2DM-simulating conditions, with a stronger effect of cytokines. The number of MCPIP1-positive pancreatic islet-cells, including beta-cells, was significantly higher in diabetic compared to nondiabetic individuals. In the 3'UTR regions of mRNAs coding for Pdx1 (pancreatic and duodenal homeobox 1), FoxO1 (forkhead box protein O1), and of a novel regulator of insulin handling, Grp94 (glucose-regulated protein 94), MCPIP1-target structures were detected. Overexpression of the wild type MCPIP1wt, but not of the mutant MCPIP1D141N (lacking the RNase activity), decreased the expression of genes involved in insulin production and GSIS. Additionally INS1-E-MCPIP1wt cells exhibited a higher Ire1 (inositol-requiring enzyme 1) expression. MCPIP1wt overexpression blunted GSIS and glucose-mediated calcium influx with no deleterious effects on glucose uptake or glucokinase activity. We identify MCPIP1 as a new common link between diabetogenic conditions and beta-cell failure. MCPIP1 may serve as an interesting target for novel beta-cell protective approaches.


Asunto(s)
Diabetes Mellitus/metabolismo , Secreción de Insulina/fisiología , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Ribonucleasas/metabolismo , Factores de Transcripción/metabolismo , Regiones no Traducidas 3'/fisiología , Animales , Calcio/metabolismo , Línea Celular , Citocinas/metabolismo , Diabetes Mellitus/patología , Proteína Forkhead Box O1/metabolismo , Glucosa/metabolismo , Humanos , Células Secretoras de Insulina/patología , ARN Mensajero/metabolismo , Ratas
6.
Am J Physiol Endocrinol Metab ; 320(4): E846-E857, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33682459

RESUMEN

Many long noncoding RNAs (lncRNAs) are enriched in pancreatic islets and several lncRNAs are linked to type 2 diabetes (T2D). Although they have emerged as potential players in ß-cell biology and T2D, little is known about their functions and mechanisms in human ß-cells. We identified an islet-enriched lncRNA, TUNAR (TCL1 upstream neural differentiation-associated RNA), which was upregulated in ß-cells of patients with T2D and promoted human ß-cell proliferation via fine-tuning of the Wnt pathway. TUNAR was upregulated following Wnt agonism by a glycogen synthase kinase-3 (GSK3) inhibitor in human ß-cells. Reciprocally, TUNAR repressed a Wnt antagonist Dickkopf-related protein 3 (DKK3) and stimulated Wnt pathway signaling. DKK3 was aberrantly expressed in ß-cells of patients with T2D and displayed a synchronized regulatory pattern with TUNAR at the single cell level. Mechanistically, DKK3 expression was suppressed by the repressive histone modifier enhancer of zeste homolog 2 (EZH2). TUNAR interacted with EZH2 in ß-cells and facilitated EZH2-mediated suppression of DKK3. These findings reveal a novel cell-specific epigenetic mechanism via islet-enriched lncRNA that fine-tunes the Wnt pathway and subsequently human ß-cell proliferation.NEW & NOTEWORTHY The discovery that long noncoding RNA TUNAR regulates ß-cell proliferation may be important in designing new treatments for diabetes.


Asunto(s)
Proliferación Celular/genética , Células Secretoras de Insulina/fisiología , ARN Largo no Codificante/fisiología , Vía de Señalización Wnt/genética , Proteínas Adaptadoras Transductoras de Señales/genética , Células Cultivadas , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patología , Proteína Potenciadora del Homólogo Zeste 2/genética , Epigénesis Genética/fisiología , Humanos , Secreción de Insulina/genética , Células Secretoras de Insulina/patología , Islotes Pancreáticos/metabolismo , Islotes Pancreáticos/patología , Regulación hacia Arriba/genética
7.
Int J Mol Sci ; 21(12)2020 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-32560352

RESUMEN

BACKGROUND: Intercellular communication mediated by cationic fluxes through the Connexin family of gap junctions regulates glucose-stimulated insulin secretion and beta cell defense against inflammatory stress. Rotigaptide (RG, ZP123) is a peptide analog that increases intercellular conductance in cardiac muscle cells by the prevention of dephosphorylation and thereby uncoupling of Connexin-43 (Cx43), possibly via action on unidentified protein phosphatases. For this reason, it is being studied in human arrhythmias. It is unknown if RG protects islet cell function and viability against inflammatory or metabolic stress, a question of considerable translational interest for the treatment of diabetes. METHODS: Apoptosis was measured in human islets shown to express Cx43, treated with RG or the control peptide ZP119 and exposed to glucolipotoxicity or IL-1ß + IFNÉ£. INS-1 cells shown to lack Cx43 were used to examine if RG protected human islet cells via Cx43 coupling. To study the mechanisms of action of Cx43-independent effects of RG, NO, IkBα degradation, mitochondrial activity, ROS, and insulin mRNA levels were determined. RESULTS: RG reduced cytokine-induced apoptosis ~40% in human islets. In Cx43-deficient INS-1 cells, this protective effect was markedly blunted as expected, but unexpectedly, RG still modestly reduced apoptosis, and improved mitochondrial function, insulin-2 gene levels, and accumulated insulin release. RG reduced NO production in Cx43-deficient INS-1 cells associated with reduced iNOS expression, suggesting that RG blunts cytokine-induced NF-κB signaling in insulin-producing cells in a Cx43-independent manner. CONCLUSION: RG reduces cytokine-induced cell death in human islets. The protective action in Cx43-deficient INS-1 cells suggests a novel inhibitory mechanism of action of RG on NF-κB signaling.


Asunto(s)
Conexina 43/metabolismo , Citocinas/metabolismo , Islotes Pancreáticos/efectos de los fármacos , Islotes Pancreáticos/metabolismo , Oligopéptidos/farmacología , Apoptosis/efectos de los fármacos , Biomarcadores , Muerte Celular/efectos de los fármacos , Línea Celular , Conexina 43/genética , Citocinas/genética , Uniones Comunicantes/metabolismo , Regulación de la Expresión Génica , Humanos , Insulina/metabolismo , Secreción de Insulina/efectos de los fármacos , Células Secretoras de Insulina/efectos de los fármacos , Células Secretoras de Insulina/metabolismo , Islotes Pancreáticos/citología , Mitocondrias/efectos de los fármacos , Mitocondrias/genética , Mitocondrias/metabolismo , FN-kappa B/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Estrés Fisiológico
8.
Diabetologia ; 63(7): 1355-1367, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32350565

RESUMEN

AIMS/HYPOTHESIS: Inflammatory signals and increased prostaglandin synthesis play a role during the development of diabetes. The prostaglandin D2 (PGD2) receptor, GPR44/DP2, is highly expressed in human islets and activation of the pathway results in impaired insulin secretion. The role of GPR44 activation on islet function and survival rate during chronic hyperglycaemic conditions is not known. In this study, we investigate GPR44 inhibition by using a selective GPR44 antagonist (AZ8154) in human islets both in vitro and in vivo in diabetic mice transplanted with human islets. METHODS: Human islets were exposed to PGD2 or proinflammatory cytokines in vitro to investigate the effect of GPR44 inhibition on islet survival rate. In addition, the molecular mechanisms of GPR44 inhibition were investigated in human islets exposed to high concentrations of glucose (HG) and to IL-1ß. For the in vivo part of the study, human islets were transplanted under the kidney capsule of immunodeficient diabetic mice and treated with 6, 60 or 100 mg/kg per day of a GPR44 antagonist starting from the transplantation day until day 4 (short-term study) or day 17 (long-term study) post transplantation. IVGTT was performed on mice at day 10 and day 15 post transplantation. After termination of the study, metabolic variables, circulating human proinflammatory cytokines, and hepatocyte growth factor (HGF) were analysed in the grafted human islets. RESULTS: PGD2 or proinflammatory cytokines induced apoptosis in human islets whereas GPR44 inhibition reversed this effect. GPR44 inhibition antagonised the reduction in glucose-stimulated insulin secretion induced by HG and IL-1ß in human islets. This was accompanied by activation of the Akt-glycogen synthase kinase 3ß signalling pathway together with phosphorylation and inactivation of forkhead box O-1and upregulation of pancreatic and duodenal homeobox-1 and HGF. Administration of the GPR44 antagonist for up to 17 days to diabetic mice transplanted with a marginal number of human islets resulted in reduced fasting blood glucose and lower glucose excursions during IVGTT. Improved glucose regulation was supported by increased human C-peptide levels compared with the vehicle group at day 4 and throughout the treatment period. GPR44 inhibition reduced plasma levels of TNF-α and growth-regulated oncogene-α/chemokine (C-X-C motif) ligand 1 and increased the levels of HGF in human islets. CONCLUSIONS/INTERPRETATION: Inhibition of GPR44 in human islets has the potential to improve islet function and survival rate under inflammatory and hyperglycaemic stress. This may have implications for better survival rate of islets following transplantation.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Islotes Pancreáticos/metabolismo , Receptores Inmunológicos/antagonistas & inhibidores , Receptores Inmunológicos/metabolismo , Receptores de Prostaglandina/antagonistas & inhibidores , Receptores de Prostaglandina/metabolismo , Factores de Transcripción/metabolismo , Apoptosis/fisiología , Western Blotting , Muerte Celular/fisiología , Glucosa/metabolismo , Humanos , Insulina/metabolismo , Secreción de Insulina/fisiología , Prostaglandina D2 , Reacción en Cadena en Tiempo Real de la Polimerasa
9.
Nat Commun ; 11(1): 2241, 2020 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-32382023

RESUMEN

The generation of pancreatic cell types from renewable cell sources holds promise for cell replacement therapies for diabetes. Although most effort has focused on generating pancreatic beta cells, considerable evidence indicates that glucagon secreting alpha cells are critically involved in disease progression and proper glucose control. Here we report on the generation of stem cell-derived human pancreatic alpha (SC-alpha) cells from pluripotent stem cells via a transient pre-alpha cell intermediate. These pre-alpha cells exhibit a transcriptional profile similar to mature alpha cells and although they produce proinsulin protein, they do not secrete significant amounts of processed insulin. Compound screening identified a protein kinase c activator that promotes maturation of pre-alpha cells into SC-alpha cells. The resulting SC-alpha cells do not express insulin, share an ultrastructure similar to cadaveric alpha cells, express and secrete glucagon in response to glucose and some glucagon secretagogues, and elevate blood glucose upon transplantation in mice.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Células Secretoras de Glucagón/citología , Células Secretoras de Insulina/efectos de los fármacos , Células Madre Pluripotentes/citología , Western Blotting , Diferenciación Celular/fisiología , Línea Celular , Electrofisiología , Técnica del Anticuerpo Fluorescente , Humanos , Páncreas/citología
10.
Am J Physiol Endocrinol Metab ; 318(6): E892-E900, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32255680

RESUMEN

Proinsulin is a misfolding-prone protein, and its efficient breakdown is critical when ß-cells are confronted with high-insulin biosynthetic demands, to prevent endoplasmic reticulum stress, a key trigger of secretory dysfunction and, if uncompensated, apoptosis. Proinsulin degradation is thought to be performed by the constitutively expressed standard proteasome, while the roles of other proteasomes are unknown. We recently demonstrated that deficiency of the proinsulin chaperone glucose-regulated protein 94 (GRP94) causes impaired proinsulin handling and defective insulin secretion associated with a compensated endoplasmic reticulum stress response. Taking advantage of this model of restricted folding capacity, we investigated the role of different proteasomes in proinsulin degradation, reasoning that insulin secretory dynamics require an inducible protein degradation system. We show that the expression of only one enzymatically active proteasome subunit, namely, the inducible ß5i-subunit, was increased in GRP94 CRISPR/Cas9 knockout (KO) cells. Additionally, the level of ß5i-containing intermediate proteasomes was significantly increased in these cells, as was ß5i-related chymotrypsin-like activity. Moreover, proinsulin levels were restored in GRP94 KO upon ß5i small interfering RNA-mediated knockdown. Finally, the fraction of ß-cells expressing the ß5i-subunit is increased in human islets from type 2 diabetes patients. We conclude that ß5i is an inducible proteasome subunit dedicated to the degradation of mishandled proinsulin.


Asunto(s)
Diabetes Mellitus Tipo 2/genética , Estrés del Retículo Endoplásmico/genética , Degradación Asociada con el Retículo Endoplásmico/genética , Secreción de Insulina/genética , Células Secretoras de Insulina/metabolismo , Proinsulina/metabolismo , Complejo de la Endopetidasa Proteasomal/genética , Animales , Diabetes Mellitus Tipo 2/metabolismo , Femenino , Técnicas de Inactivación de Genes , Humanos , Islotes Pancreáticos/metabolismo , Glicoproteínas de Membrana/genética , Persona de Mediana Edad , Complejo de la Endopetidasa Proteasomal/metabolismo , Pliegue de Proteína , Ratas
11.
PLoS One ; 15(2): e0222432, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32053590

RESUMEN

A central and still open question regarding the pathogenesis of autoimmune diseases, such as type 1 diabetes, concerns the processes that underlie the generation of MHC-presented autoantigenic epitopes that become targets of autoimmune attack. Proteasomal degradation is a key step in processing of proteins for MHC class I presentation. Different types of proteasomes can be expressed in cells dictating the repertoire of peptides presented by the MHC class I complex. Of particular interest for type 1 diabetes is the proteasomal configuration of pancreatic ß cells, as this might facilitate autoantigen presentation by ß cells and thereby their T-cell mediated destruction. Here we investigated whether so-called inducible subunits of the proteasome are constitutively expressed in ß cells, regulated by inflammatory signals and participate in the formation of active intermediate or immuno-proteasomes. We show that inducible proteasomal subunits are constitutively expressed in human and rodent islets and an insulin-secreting cell-line. Moreover, the ß5i subunit is incorporated into active intermediate proteasomes that are bound to 19S or 11S regulatory particles. Finally, inducible subunit expression along with increase in total proteasome activities are further upregulated by low concentrations of IL-1ß stimulating proinsulin biosynthesis. These findings suggest that the ß cell proteasomal repertoire is more diverse than assumed previously and may be highly responsive to a local inflammatory islet environment.


Asunto(s)
Células Secretoras de Insulina/metabolismo , Interleucina-1beta/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Animales , Autoantígenos/inmunología , Autoantígenos/metabolismo , Diabetes Mellitus Tipo 1/inmunología , Diabetes Mellitus Tipo 1/patología , Antígenos de Histocompatibilidad Clase I/inmunología , Antígenos de Histocompatibilidad Clase I/metabolismo , Humanos , Células Secretoras de Insulina/inmunología , Células Secretoras de Insulina/patología , Interleucina-1beta/inmunología , Células Jurkat , Ratones , Cultivo Primario de Células , Proinsulina/biosíntesis , Complejo de la Endopetidasa Proteasomal/inmunología , Proteolisis , RNA-Seq , Regulación hacia Arriba/inmunología
12.
Diabetologia ; 62(6): 1011-1023, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30903205

RESUMEN

AIMS/HYPOTHESIS: Sodium-glucose cotransporter (SGLT) 2 inhibitors constitute a new class of glucose-lowering drugs, but they increase glucagon secretion, which may counteract their glucose-lowering effect. Previous studies using static incubation of isolated human islets or the glucagon-secreting cell line α-TC1 suggested that this results from direct inhibition of alpha cell SGLT1/2-activity. The aim of this study was to test whether the effects of SGLT2 on glucagon secretion demonstrated in vitro could be reproduced in a more physiological setting. METHODS: We explored the effect of SGLT2 activity on glucagon secretion using isolated perfused rat pancreas, a physiological model for glucagon secretion. Furthermore, we investigated Slc5a2 (the gene encoding SGLT2) expression in rat islets as well as in mouse and human islets and in mouse and human alpha, beta and delta cells to test for potential inter-species variations. SGLT2 protein content was also investigated in mouse, rat and human islets. RESULTS: Glucagon output decreased three- to fivefold within minutes of shifting from low (3.5 mmol/l) to high (10 mmol/l) glucose (4.0 ± 0.5 pmol/15 min vs 1.3 ± 0.3 pmol/15 min, p < 0.05). The output was unaffected by inhibition of SGLT1/2 with dapagliflozin or phloridzin or by addition of the SGLT1/2 substrate α-methylglucopyranoside, whether at low or high glucose concentrations (p = 0.29-0.99). Insulin and somatostatin secretion (potential paracrine regulators) was also unaffected. Slc5a2 expression and SGLT2 protein were marginal or below detection limit in rat, mouse and human islets and in mouse and human alpha, beta and delta cells. CONCLUSIONS/INTERPRETATION: Our combined data show that increased plasma glucagon during SGLT2 inhibitor treatment is unlikely to result from direct inhibition of SGLT2 in alpha cells, but instead may occur downstream of their blood glucose-lowering effects.


Asunto(s)
Islotes Pancreáticos/metabolismo , Páncreas/metabolismo , Transportador 2 de Sodio-Glucosa/metabolismo , Animales , Western Blotting , Pollos , Femenino , Glucagón/metabolismo , Inmunohistoquímica , Insulina/metabolismo , Masculino , Ratones , Ratas , Ratas Wistar , Transportador 1 de Sodio-Glucosa/genética , Transportador 1 de Sodio-Glucosa/metabolismo , Transportador 2 de Sodio-Glucosa/genética , Somatostatina/metabolismo
13.
Diabetes ; 68(4): 747-760, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30670477

RESUMEN

Although endoplasmic reticulum (ER) chaperone binding to mutant proinsulin has been reported, the role of protein chaperones in the handling of wild-type proinsulin is underinvestigated. Here, we have explored the importance of glucose-regulated protein 94 (GRP94), a prominent ER chaperone known to fold insulin-like growth factors, in proinsulin handling within ß-cells. We found that GRP94 coimmunoprecipitated with proinsulin and that inhibition of GRP94 function and/or expression reduced glucose-dependent insulin secretion, shortened proinsulin half-life, and lowered intracellular proinsulin and insulin levels. This phenotype was accompanied by post-ER proinsulin misprocessing and higher numbers of enlarged insulin granules that contained amorphic material with reduced immunogold staining for mature insulin. Insulin granule exocytosis was accelerated twofold, but the secreted insulin had diminished bioactivity. Moreover, GRP94 knockdown or knockout in ß-cells selectively activated protein kinase R-like endoplasmic reticulum kinase (PERK), without increasing apoptosis levels. Finally, GRP94 mRNA was overexpressed in islets from patients with type 2 diabetes. We conclude that GRP94 is a chaperone crucial for proinsulin handling and insulin secretion.


Asunto(s)
Diabetes Mellitus Tipo 2/metabolismo , Retículo Endoplásmico/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Secreción de Insulina/fisiología , Células Secretoras de Insulina/metabolismo , Proteínas de la Membrana/metabolismo , Proinsulina/metabolismo , Animales , Apoptosis/fisiología , Línea Celular Tumoral , Estrés del Retículo Endoplásmico/fisiología , Exocitosis/fisiología , Humanos , Insulina/metabolismo , Pliegue de Proteína , Ratas , eIF-2 Quinasa/metabolismo
14.
PLoS One ; 13(12): e0208998, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30557325

RESUMEN

AIMS/HYPOTHESIS: GPR44 (DP2, PTGDR2, CRTh2) is the receptor for the pro-inflammatory mediator prostaglandin D2 (PGD2) and it is enriched in human islets. In rodent islets, PGD2 is produced in response to glucose, suggesting that the PGD2-GPR44/DP2 axis may play a role in human islet function during hyperglycemia. Consequently, the aim of this work was to elucidate the insulinotropic role of GPR44 antagonism in vitro in human beta-cells and in type 2 diabetes (T2DM) patients. METHODS: We determined the drive on PGD2 secretion by glucose and IL-1beta, as well as, the impact on insulin secretion by pharmacological GPR44/DP2 antagonism (AZD1981) in human islets and beta-cells in vitro. To test if metabolic control would be improved by antagonizing a hyperglycemia-driven increased PGD2 tone, we performed a proof-of-mechanism study in 20 T2DM patients (average 54 years, HbA1c 9.4%, BMI 31.6 kg/m2). The randomized, double-blind, placebo-controlled cross-over study consisted of two three-day treatment periods (AZD1981 or placebo) separated by a three-day wash-out period. Mixed meal tolerance test (MMTT) and intravenous graded glucose infusion (GGI) was performed at start and end of each treatment period. Assessment of AZD1981 pharmacokinetics, glucose, insulin, C-peptide, glucagon, GLP-1, and PGD2 pathway biomarkers were performed. RESULTS: We found (1) that PGD2 is produced in human islet in response to high glucose or IL-1beta, but likely by stellate cells rather than endocrine cells; (2) that PGD2 suppresses both glucose and GLP-1 induced insulin secretion in vitro; and (3) that the GPR44/DP2 antagonist (AZD1981) in human beta-cells normalizes insulin secretion. However, AZD1981 had no impact on neither glucose nor incretin dependent insulin secretion in humans (GGI AUC C-peptide 1-2h and MMTT AUC Glucose 0-4h LS mean ratios vs placebo of 0.94 (80% CI of 0.90-0.98, p = 0.12) and 0.99 (90% CI of 0.94-1.05, p = 0.45), despite reaching the expected antagonist exposure. CONCLUSION/INTERPRETATION: Pharmacological inhibition of the PGD2-GPR44/DP2 axis has no major impact on the modulation of acute insulin secretion in T2DM patients. TRIAL REGISTRATION: ClinicalTrials.gov NCT02367066.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Insulina/metabolismo , Prostaglandina D2/metabolismo , Receptores Inmunológicos/metabolismo , Receptores de Prostaglandina/metabolismo , Factores de Transcripción/metabolismo , Acetatos/farmacología , Acetatos/uso terapéutico , Glucemia/metabolismo , Péptido C/sangre , Línea Celular , Proteínas de Unión al ADN/antagonistas & inhibidores , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Indoles/farmacología , Indoles/uso terapéutico , Islotes Pancreáticos/efectos de los fármacos , Islotes Pancreáticos/metabolismo , Masculino , Persona de Mediana Edad , Prostaglandina D2/antagonistas & inhibidores , Receptores Inmunológicos/antagonistas & inhibidores , Receptores de Prostaglandina/antagonistas & inhibidores , Factores de Transcripción/antagonistas & inhibidores
15.
Mol Cell Endocrinol ; 478: 106-114, 2018 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-30121202

RESUMEN

ß-Cells may be a source of IL-1ß that is produced as inactive pro-IL-1ß and processed into biologically-active IL-1ß by enzymatic cleavage mediated by the NLRP1-, NLRP3- and NLRC4-inflammasomes. Little is known about the ß-cell inflammasomes. NLRP1-expression was upregulated in islet-cells from T2D-patients and by IL-1ß+IFNγ in INS-1 cells in a histone-deacetylase dependent manner. NLRP3 was downregulated by cytokines in INS-1 cells. NLRC4 was barely expressed and not regulated by cytokines. High extracellular K+ reduced cytokine-induced apoptosis and NO production and restored cytokine-inhibited accumulated insulin-secretion. Basal inflammasome expression was JNK1-3 dependent. Knock-down of the ASC interaction domain common for NLRP1 and 3 improved insulin secretion and ameliorated IL-1ß and/or glucolipotoxicity-induced cell death and reduced cytokine-induced NO-production. Broad inflammasome-inhibition, but not NLRP3-selective inhibition, protected against IL-1ß-induced INS-1 cell-toxicity. We suggest that IL-1ß causes ß-cell toxicity in part by NLRP1 mediated caspase-1-activation and maturation of IL-1ß leading to an autocrine potentiation loop.


Asunto(s)
Apoptosis , Inflamasomas/metabolismo , Células Secretoras de Insulina/metabolismo , Estrés Fisiológico , Animales , Apoptosis/efectos de los fármacos , Proteínas Adaptadoras de Señalización CARD , Muerte Celular/efectos de los fármacos , Línea Celular , Citocinas/farmacología , Citoprotección/efectos de los fármacos , Femenino , Glucosa/toxicidad , Histona Desacetilasas/metabolismo , Humanos , Secreción de Insulina/efectos de los fármacos , Células Secretoras de Insulina/efectos de los fármacos , Interleucina-1beta/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Lípidos/toxicidad , Persona de Mediana Edad , Potasio/farmacología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas , Receptores Purinérgicos P2X7/metabolismo , Estrés Fisiológico/efectos de los fármacos , Adulto Joven
16.
Diabetes ; 67(10): 2019-2037, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30065031

RESUMEN

Stress-related changes in ß-cell mRNA levels result from a balance between gene transcription and mRNA decay. The regulation of RNA decay pathways has not been investigated in pancreatic ß-cells. We found that no-go and nonsense-mediated RNA decay pathway components (RDPCs) and exoribonuclease complexes were expressed in INS-1 cells and human islets. Pelo, Dcp2, Dis3L2, Upf2, and Smg1/5/6/7 were upregulated by inflammatory cytokines in INS-1 cells under conditions where central ß-cell mRNAs were downregulated. These changes in RDPC mRNA or corresponding protein levels were largely confirmed in INS-1 cells and rat/human islets. Cytokine-induced upregulation of Pelo, Xrn1, Dis3L2, Upf2, and Smg1/6 was reduced by inducible nitric oxide synthase inhibition, as were endoplasmic reticulum (ER) stress, inhibition of Ins1/2 mRNA, and accumulated insulin secretion. Reactive oxygen species inhibition or iron chelation did not affect RDPC expression. Pelo or Xrn1 knockdown (KD) aggravated, whereas Smg6 KD ameliorated, cytokine-induced INS-1 cell death without affecting ER stress; both increased insulin biosynthesis and medium accumulation but not glucose-stimulated insulin secretion in cytokine-exposed INS-1 cells. In conclusion, RDPCs are regulated by inflammatory stress in ß-cells. RDPC KD improved insulin biosynthesis, likely by preventing Ins1/2 mRNA clearance. Pelo/Xrn1 KD aggravated, but Smg6 KD ameliorated, cytokine-mediated ß-cell death, possibly through prevention of proapoptotic and antiapoptotic mRNA degradation, respectively.


Asunto(s)
Citocinas/metabolismo , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Estabilidad del ARN/genética , ARN/metabolismo , Animales , Apoptosis/efectos de los fármacos , Northern Blotting , Western Blotting , Línea Celular , Supervivencia Celular/efectos de los fármacos , Citocinas/farmacología , Exorribonucleasas/metabolismo , Humanos , Proteínas Nucleares/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Fosforilación/efectos de los fármacos , Estabilidad del ARN/fisiología , Ratas , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal/efectos de los fármacos
17.
PLoS One ; 12(8): e0182371, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28796801

RESUMEN

Pregnancy is associated with increased ß-cell proliferation driven by prolactin. Long noncoding RNAs (lncRNA) are the most abundant RNA species in the mammalian genome, yet, their functional importance is mainly elusive. AIMS/HYPOTHESIS: This study tests the hypothesis that lncRNAs regulate ß-cell proliferation in response to prolactin in the context of ß-cell mass compensation in pregnancy. METHODS: The expression profile of lncRNAs in mouse islets at day 14.5 of pregnancy was explored by a bioinformatics approach, further confirmed by quantitative PCR at different days of pregnancy, and islet specificity was evaluated by comparing expression in islets versus other tissues. In order to establish the role of the candidate lncRNAs we studied cell proliferation in mouse islets and the MIN6 ß-cell line by EdU incorporation and cell count. RESULTS: We found that a group of lncRNAs is differentially regulated in mouse islets at 14.5 days of pregnancy. At different stages of pregnancy, these lncRNAs are dynamically expressed, and expression is prolactin dependent in mouse islets and MIN6 cells. One of those lncRNAs, Gm16308 (Lnc03), is dynamically regulated during pregnancy, prolactin-dependent and islet-enriched. Silencing Lnc03 in primary ß-cells and MIN6 cells inhibits, whereas over-expression stimulates, proliferation even in the absence of prolactin, demonstrating that Lnc03 regulates ß-cell growth. CONCLUSIONS/INTERPRETATION: During pregnancy mouse islet proliferation is correlated with dynamic changes of lncRNA expression. In particular, Lnc03 regulates mouse ß-cell proliferation and may be a crucial component of ß-cell proliferation in ß-cell mass adaptation in both health and disease.


Asunto(s)
Proliferación Celular , Células Secretoras de Insulina/fisiología , ARN Largo no Codificante/fisiología , Animales , Células Cultivadas , Femenino , Regulación del Desarrollo de la Expresión Génica , Ratones Endogámicos C57BL , Embarazo , Prolactina/metabolismo , Factor de Transcripción STAT5/metabolismo , Transducción de Señal , Transcriptoma
18.
Endocrinology ; 155(6): 2112-21, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24712876

RESUMEN

ß-Cells rapidly secrete insulin in response to acute increases in plasma glucose but, upon further continuous exposure to glucose, insulin secretion progressively decreases. Although the mechanisms are unclear, this mode of regulation suggests the presence of a time-dependent glucosensory system that temporarily attenuates insulin secretion. Interestingly, early-stage ß-cell dysfunction is often characterized by basal (ie, fasting) insulin hypersecretion, suggesting a disruption of these related mechanisms. Because sweet taste receptors (STRs) on ß-cells are implicated in the regulation of insulin secretion and glucose is a bona fide STR ligand, we tested whether STRs mediate this sensory mechanism and participate in the regulation of basal insulin secretion. We used mice lacking STR signaling (T1R2(-/-) knockout) and pharmacologic inhibition of STRs in human islets. Mouse and human islets deprived of STR signaling hypersecrete insulin at short-term fasting glucose concentrations. Accordingly, 5-hour fasted T1R2(-/-) mice have increased plasma insulin and lower glucose. Exposure of isolated wild-type islets to elevated glucose levels reduced STR expression, whereas islets from diabetic (db/db) or diet-induced obese mouse models show similar down-regulation. This transcriptional reprogramming in response to hyperglycemia correlates with reduced STR function in these mouse models, leading to insulin hypersecretion. These findings reveal a novel mechanism by which insulin secretion is physiologically regulated by STRs and also suggest that, during the development of diabetes, STR function is compromised by hyperglycemia leading to hyperinsulinemia. These observations further suggest that STRs might be a promising therapeutic target to prevent and treat type 2 diabetes.


Asunto(s)
Diabetes Mellitus Tipo 2/metabolismo , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animales , Células Cultivadas , Diabetes Mellitus Tipo 2/genética , Humanos , Secreción de Insulina , Masculino , Ratones , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptores Acoplados a Proteínas G/genética
19.
PLoS One ; 9(1): e86454, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24466105

RESUMEN

Functional expression of sweet taste receptors (T1R2 and T1R3) has been reported in numerous metabolic tissues, including the gut, pancreas, and, more recently, in adipose tissue. It has been suggested that sweet taste receptors in these non-gustatory tissues may play a role in systemic energy balance and metabolism. Smaller adipose depots have been reported in T1R3 knockout mice on a high carbohydrate diet, and sweet taste receptors have been reported to regulate adipogenesis in vitro. To assess the potential contribution of sweet taste receptors to adipose tissue biology, we investigated the adipose tissue phenotypes of T1R2 and T1R3 knockout mice. Here we provide data to demonstrate that when fed an obesogenic diet, both T1R2 and T1R3 knockout mice have reduced adiposity and smaller adipocytes. Although a mild glucose intolerance was observed with T1R3 deficiency, other metabolic variables analyzed were similar between genotypes. In addition, food intake, respiratory quotient, oxygen consumption, and physical activity were unchanged in T1R2 knockout mice. Although T1R2 deficiency did not affect adipocyte number in peripheral adipose depots, the number of bone marrow adipocytes is significantly reduced in these knockout animals. Finally, we present data demonstrating that T1R2 and T1R3 knockout mice have increased cortical bone mass and trabecular remodeling. This report identifies novel functions for sweet taste receptors in the regulation of adipose and bone biology, and suggests that in these contexts, T1R2 and T1R3 are either dependent on each other for activity or have common independent effects in vivo.


Asunto(s)
Adiposidad/genética , Huesos/metabolismo , Receptores Acoplados a Proteínas G/deficiencia , Papilas Gustativas/metabolismo , Adipocitos/citología , Adipocitos/metabolismo , Tejido Adiposo/metabolismo , Animales , Densidad Ósea , Remodelación Ósea/genética , Huesos/citología , Tamaño de la Célula , Dieta , Glucosa/metabolismo , Masculino , Ratones , Ratones Noqueados
20.
J Biol Chem ; 288(45): 32475-32489, 2013 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-24068707

RESUMEN

G protein-coupled receptors mediate responses to a myriad of ligands, some of which regulate adipocyte differentiation and metabolism. The sweet taste receptors T1R2 and T1R3 are G protein-coupled receptors that function as carbohydrate sensors in taste buds, gut, and pancreas. Here we report that sweet taste receptors T1R2 and T1R3 are expressed throughout adipogenesis and in adipose tissues. Treatment of mouse and human precursor cells with artificial sweeteners, saccharin and acesulfame potassium, enhanced adipogenesis. Saccharin treatment of 3T3-L1 cells and primary mesenchymal stem cells rapidly stimulated phosphorylation of Akt and downstream targets with functions in adipogenesis such as cAMP-response element-binding protein and FOXO1; however, increased expression of peroxisome proliferator-activated receptor γ and CCAAT/enhancer-binding protein α was not observed until relatively late in differentiation. Saccharin-stimulated Akt phosphorylation at Thr-308 occurred within 5 min, was phosphatidylinositol 3-kinase-dependent, and occurred in the presence of high concentrations of insulin and dexamethasone; phosphorylation of Ser-473 occurred more gradually. Surprisingly, neither saccharin-stimulated adipogenesis nor Thr-308 phosphorylation was dependent on expression of T1R2 and/or T1R3, although Ser-473 phosphorylation was impaired in T1R2/T1R3 double knock-out precursors. In mature adipocytes, artificial sweetener treatment suppressed lipolysis even in the presence of forskolin, and lipolytic responses were correlated with phosphorylation of hormone-sensitive lipase. Suppression of lipolysis by saccharin in adipocytes was also independent of T1R2 and T1R3. These results suggest that some artificial sweeteners have previously uncharacterized metabolic effects on adipocyte differentiation and metabolism and that effects of artificial sweeteners on adipose tissue biology may be largely independent of the classical sweet taste receptors, T1R2 and T1R3.


Asunto(s)
Adipocitos/metabolismo , Adipogénesis/efectos de los fármacos , Lipólisis/efectos de los fármacos , Receptores Acoplados a Proteínas G/metabolismo , Sacarina/farmacología , Células Madre/metabolismo , Edulcorantes/efectos adversos , Células 3T3-L1 , Adipogénesis/genética , Adyuvantes Inmunológicos/farmacología , Animales , Proteína alfa Potenciadora de Unión a CCAAT/genética , Proteína alfa Potenciadora de Unión a CCAAT/metabolismo , Diferenciación Celular/efectos de los fármacos , Colforsina/farmacología , AMP Cíclico/genética , AMP Cíclico/metabolismo , Femenino , Proteína Forkhead Box O1 , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Humanos , Lipólisis/genética , Masculino , Ratones , Persona de Mediana Edad , PPAR gamma/genética , PPAR gamma/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Fosforilación/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptores Acoplados a Proteínas G/genética , Esterol Esterasa/genética , Esterol Esterasa/metabolismo , Edulcorantes/farmacocinética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA