Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Exp Biol ; 227(10)2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38680124

RESUMEN

Schooling is a collective behavior that relies on a fish's ability to sense and respond to the other fish around it. Previous work has identified 'rules' of schooling - attraction to neighbors that are far away, repulsion from neighbors that are too close and alignment with neighbors at the correct distance - but we do not understand well how these rules emerge from the sensory physiology and behavior of individual fish. In particular, fish use both vision and their lateral lines to sense each other, but it is unclear how much they rely on information from these sensory modalities to coordinate schooling behavior. To address this question, we studied how the schooling of giant danios (Devario aequipinnatus) changes when they are unable to see or use their lateral lines. We found that giant danios were able to school without their lateral lines but did not school in darkness. Surprisingly, giant danios in darkness had the same attraction properties as fish in light when they were in close proximity, indicating that they could sense nearby fish with their lateral lines. However, they were not attracted to more distant fish, suggesting that long-distance attraction through vision is important for maintaining a cohesive school. These results help us expand our understanding of the roles that vision and the lateral line play in the schooling of some fish species.


Asunto(s)
Visión Ocular , Animales , Visión Ocular/fisiología , Conducta Social , Sistema de la Línea Lateral/fisiología , Oscuridad , Cyprinidae/fisiología , Conducta Animal/fisiología
2.
Sci Rep ; 13(1): 15032, 2023 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-37699939

RESUMEN

Anguilliform swimmers, like eels or lampreys, are highly efficient swimmers. Key to understanding their performances is the relationship between the body's kinematics and resulting swimming speed and efficiency. But, we cannot prescribe kinematics to living fish, and it is challenging to measure their power consumption. Here, we characterise the swimming speed and cost of transport of a free-swimming undulatory bio-inspired robot as we vary its kinematic parameters, including joint amplitude, body wavelength, and frequency. We identify a trade-off between speed and efficiency. Speed, in terms of stride length, increases for increasing maximum tail angle, described by the newly proposed specific tail amplitude and reaches a maximum value around the specific tail amplitude of unity. Efficiency, in terms of the cost of transport, is affected by the whole-body motion. Cost of transport decreases for increasing travelling wave-like kinematics, and lower specific tail amplitudes. Our results suggest that live eels tend to choose efficiency over speed and provide insights into the key characteristics affecting undulatory swimming performance.


Asunto(s)
Robótica , Animales , Natación , Anguilas , Lampreas , Movimiento (Física)
3.
J Exp Biol ; 226(14)2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37493068

RESUMEN

Work carried out since the late 1970s has provided key insights into the comparative biomechanics, kinematics, behaviour and neurobiology of fish escape responses. An escape response is an ecologically important behaviour used by fishes to evade predation and aggression via rapid swimming movements. With environmental change expected to affect the physiology and biomechanics of aquatic ectotherms, there is a growing interest in understanding how environmental stressors affect the swimming performance and behaviour of fishes during escape responses, particularly in the context of predator-prey interactions. As the study of fish swimming continues to expand, there have been repeated calls to standardise experiments and reporting practices to facilitate integrative and comparative studies. Here, we provide a set of practical guidelines for conducting, analysing and reporting experiments on escape responses in fish, including a reporting checklist to assist authors undertaking these experiments. These resources will facilitate executing and reporting escape response experiments in a rigorous and transparent fashion, helping to advance the study of fish swimming in an era of rapid environmental change.


Asunto(s)
Peces , Natación , Animales , Fenómenos Biomecánicos , Peces/fisiología , Natación/fisiología , Conducta Predatoria , Agresión , Reacción de Fuga/fisiología
4.
J Exp Biol ; 226(9)2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-37042277

RESUMEN

The bodies of most swimming fishes are very flexible and deform as result of both external fluid dynamic forces and internal musculoskeletal forces. If fluid forces change, the body motion will also change unless the fish senses the change and alters its muscle activity to compensate. Lampreys and other fishes have mechanosensory cells in their spinal cords that allow them to sense how their body is bending. We hypothesized that lampreys (Petromyzon marinus) actively regulate body curvature to maintain a fairly constant swimming waveform even as swimming speed and fluid dynamic forces change. To test this hypothesis, we measured the steady swimming kinematics of lampreys swimming in normal water, and water in which the viscosity was increased by 10 or 20 times by adding methylcellulose. Increasing the viscosity over this range increases the drag coefficient, potentially increasing fluid forces up to 40%. Previous computational results suggested that if lampreys did not compensate for these forces, the swimming speed would drop by about 52%, the amplitude would drop by 39%, and posterior body curvature would increase by about 31%, while tail beat frequency would remain the same. Five juvenile sea lampreys were filmed swimming through still water, and midlines were digitized using standard techniques. Although swimming speed dropped by 44% from 1× to 10× viscosity, amplitude only decreased by 4%, and curvature increased by 7%, a much smaller change than the amount we estimated if there was no compensation. To examine the waveform overall, we performed a complex orthogonal decomposition and found that the first mode of the swimming waveform (the primary swimming pattern) did not change substantially, even at 20× viscosity. Thus, it appears that lampreys are compensating, at least partially, for the changes in viscosity, which in turn suggests that sensory feedback is involved in regulating the body waveform.


Asunto(s)
Lampreas , Petromyzon , Animales , Lampreas/fisiología , Natación/fisiología , Fenómenos Biomecánicos/fisiología , Viscosidad , Peces/fisiología
5.
J Exp Biol ; 226(Suppl_1)2023 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-37086034

RESUMEN

Nearly all fish have flexible bodies that bend as a result of internal muscular forces and external fluid forces that are dynamically coupled with the mechanical properties of the body. Swimming is therefore strongly influenced by the body's flexibility, yet we do not know how fish species vary in their flexibility and in their ability to modulate flexibility with muscle activity. A more fundamental problem is our lack of knowledge about how any of these differences in flexibility translate into swimming performance. Thus, flexibility represents a hidden axis of diversity among fishes that may have substantial impacts on swimming performance. Although engineers have made substantial progress in understanding these fluid-structure interactions using physical and computational models, the last biological review of these interactions and how they give rise to fish swimming was carried out more than 20 years ago. In this Review, we summarize work on passive and active body mechanics in fish, physical models of fish and bioinspired robots. We also revisit some of the first studies to explore flexural stiffness and discuss their relevance in the context of more recent work. Finally, we pose questions and suggest future directions that may help reveal important links between flexibility and swimming performance.


Asunto(s)
Aletas de Animales , Peces , Animales , Fenómenos Biomecánicos , Aletas de Animales/fisiología , Peces/fisiología , Natación/fisiología
6.
Proc Natl Acad Sci U S A ; 120(11): e2213302120, 2023 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-36897980

RESUMEN

Spinal injuries in many vertebrates can result in partial or complete loss of locomotor ability. While mammals often experience permanent loss, some nonmammals, such as lampreys, can regain swimming function, though the exact mechanism is not well understood. One hypothesis is that amplified proprioceptive (body-sensing) feedback can allow an injured lamprey to regain functional swimming even if the descending signal is lost. This study employs a multiscale, integrative, computational model of an anguilliform swimmer fully coupled to a viscous, incompressible fluid and examines the effects of amplified feedback on swimming behavior. This represents a model that analyzes spinal injury recovery by combining a closed-loop neuromechanical model with sensory feedback coupled to a full Navier-Stokes model. Our results show that in some cases, feedback amplification below a spinal lesion is sufficient to partially or entirely restore effective swimming behavior.


Asunto(s)
Retroalimentación Sensorial , Traumatismos Vertebrales , Animales , Lampreas , Locomoción , Natación , Médula Espinal , Mamíferos
7.
Ecol Evol ; 12(11): e9499, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36415873

RESUMEN

Fishes have repeatedly evolved characteristic body shapes depending on how close they live to the substrate. Pelagic fishes live in open water and typically have narrow, streamlined body shapes; benthic and demersal fishes live close to the substrate; and demersal fishes often have deeper bodies. These shape differences are often associated with behavioral differences: pelagic fishes swim nearly constantly, demersal fishes tend to maneuver near the substrate, and benthic fishes often lie in wait on the substrate. We hypothesized that these morphological and behavioral differences would be reflected in the mechanical properties of the body, and specifically in vertebral column stiffness, because it is an attachment point for the locomotor musculature and a central axis for body bending. The vertebrae of bony fishes are composed of two cones connected by a foramen, which is filled by the notochord. Since the notochord is more flexible than bony vertebral centra, we predicted that pelagic fishes would have narrower foramina or shallower cones, leading to less notochordal material and a stiffer vertebral column which might support continuous swimming. In contrast, we predicted that benthic and demersal fishes would have more notochordal material, making the vertebral column more flexible for diverse behaviors in these species. We therefore examined vertebral morphology in 79 species using micro-computed tomography scans. Six vertebral features were measured including notochordal foramen diameter, centrum body length, and the cone angles and diameters for the anterior and posterior vertebral cones, along with body fineness. Using phylogenetic generalized least squares analyses, we found that benthic and pelagic species differed significantly, with larger foramina, shorter centra, and larger cones in benthic species. Thus, morphological differences in the internal shape of the vertebrae of fishes are consistent with a stiffer vertebral column in pelagic fishes and with a more flexible vertebral column in benthic species.

8.
J Exp Biol ; 224(21)2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34632494

RESUMEN

Axon regeneration is critical for restoring neural function after spinal cord injury. This has prompted a series of studies on the neural and functional recovery of lampreys after spinal cord transection. Despite this, there are still many basic questions remaining about how much functional recovery depends on axon regeneration. Our goal was to examine how swimming performance is related to degree of axon regeneration in lampreys recovering from spinal cord transection by quantifying the relationship between swimming performance and percent axon regeneration of transected lampreys after 11 weeks of recovery. We found that while swimming speeds varied, they did not relate to percent axon regeneration. In fact, swimming speeds were highly variable within individuals, meaning that most individuals could swim at both moderate and slow speeds, regardless of percent axon regeneration. However, none of the transected individuals were able to swim as fast as the control lampreys. To swim fast, control lampreys generated high amplitude body waves with long wavelengths. Transected lampreys generated body waves with lower amplitude and shorter wavelengths than controls, and to compensate, transected lampreys increased their wave frequencies to swim faster. As a result, transected lampreys had significantly higher frequencies than control lampreys at comparable swimming velocities. These data suggest that the control lampreys swam more efficiently than transected lampreys. In conclusion, there appears to be a minimal recovery threshold in terms of percent axon regeneration required for lampreys to be capable of swimming; however, there also seems to be a limit to how much they can behaviorally recover.


Asunto(s)
Lampreas , Natación , Animales , Axones , Fenómenos Biomecánicos , Humanos , Regeneración Nerviosa , Médula Espinal
9.
Sci Robot ; 6(57)2021 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-34380758

RESUMEN

Skin sensors on an eel-like robot couple external hydrodynamic pressure with internal neural patterns for robust swimming.


Asunto(s)
Hidrodinámica , Natación , Fenómenos Biomecánicos
10.
J Physiol ; 599(16): 3825-3840, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34187088

RESUMEN

Locomotion is an essential behaviour for the survival of all animals. The neural circuitry underlying locomotion is therefore highly robust to a wide variety of perturbations, including injury and abrupt changes in the environment. In the short term, fault tolerance in neural networks allows locomotion to persist immediately after mild to moderate injury. In the longer term, in many invertebrates and vertebrates, neural reorganization including anatomical regeneration can restore locomotion after severe perturbations that initially caused paralysis. Despite decades of research, very little is known about the mechanisms underlying locomotor resilience at the level of the underlying neural circuits and coordination of central pattern generators (CPGs). Undulatory locomotion is an ideal behaviour for exploring principles of circuit organization, neural control and resilience of locomotion, offering a number of unique advantages including experimental accessibility and modelling tractability. In comparing three well-characterized undulatory swimmers, lampreys, larval zebrafish and Caenorhabditis elegans, we find similarities in the manifestation of locomotor resilience. To advance our understanding, we propose a comparative approach, integrating experimental and modelling studies, that will allow the field to begin identifying shared and distinct solutions for overcoming perturbations to persist in orchestrating this essential behaviour.


Asunto(s)
Locomoción , Pez Cebra , Animales , Lampreas , Redes Neurales de la Computación , Médula Espinal
11.
Integr Comp Biol ; 61(2): 414-426, 2021 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-34048550

RESUMEN

We modeled swimming kinematics and body mechanics of several fish species of varying habitat and body shape based on measurements of internal vertebral morphology. SYNOPSIS: One key evolutionary innovation that separates vertebrates from invertebrates is the notochord, a central element that provides the stiffness needed for powerful movements. Later, the notochord was further stiffened by the vertebrae, cartilaginous, and bony elements, surrounding the notochord. The ancestral notochord is retained in modern vertebrates as intervertebral material, but we know little about its mechanical interactions with surrounding vertebrae. In this study, the internal shape of the vertebrae-where this material is found-was quantified in 16 species of fishes with various body shapes, swimming modes, and habitats. We used micro-computed tomography to measure the internal shape. We then created and mechanically tested physical models of intervertebral joints. We also mechanically tested actual vertebrae of five species. Material testing shows that internal morphology of the centrum significantly affects bending and torsional stiffness. Finally, we performed swimming trials to gather kinematic data. Combining these data, we created a model that uses internal vertebral morphology to make predictions about swimming kinematics and mechanics. We used linear discriminant analysis (LDA) to assess the relationship between vertebral shape and our categorical traits. The analysis revealed that internal vertebral morphology is sufficient to predict habitat, body shape, and swimming mode in our fishes. This model can also be used to make predictions about swimming in fishes not easily studied in the laboratory, such as deep sea and extinct species, allowing the development of hypotheses about their natural behavior.


Asunto(s)
Peces , Columna Vertebral , Natación , Animales , Conducta Animal , Fenómenos Biomecánicos , Peces/anatomía & histología , Peces/fisiología , Columna Vertebral/diagnóstico por imagen , Microtomografía por Rayos X
12.
Integr Comp Biol ; 61(2): 427-441, 2021 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-33982077

RESUMEN

Swimming in schools has long been hypothesized to allow fish to save energy. Fish must exploit the energy from the wakes of their neighbors for maximum energy savings, a feat that requires them to both synchronize their tail movements and stay in certain positions relative to their neighbors. To maintain position in a school, we know that fish use multiple sensory systems, mainly their visual and flow sensing lateral line system. However, how fish synchronize their swimming movements in a school is still not well understood. Here, we test the hypothesis that this synchronization may depend on functional differences in the two branches of the lateral line sensory system that detects water movements close to the fish's body. The anterior branch, located on the head, encounters largely undisturbed free-stream flow, while the posterior branch, located on the trunk and tail, encounters flow that has been affected strongly by the tail movement. Thus, we hypothesize that the anterior branch may be more important for regulating position within the school, while the posterior branch may be more important for synchronizing tail movements. Our study examines functional differences in the anterior and posterior lateral line in the structure and tail synchronization of fish schools. We used a widely available aquarium fish that schools, the giant danio, Devario equipinnatus. Fish swam in a large circular tank where stereoscopic videos recordings were used to reconstruct the 3D position of each individual within the school and to track tail kinematics to quantify synchronization. For one fish in each school, we ablated using cobalt chloride either the anterior region only, the posterior region only, or the entire lateral line system. We observed that ablating any region of the lateral line system causes fish to swim in a "box" or parallel swimming formation, which was different from the diamond formation observed in normal fish. Ablating only the anterior region did not substantially reduce tail beat synchronization but ablating only the posterior region caused fish to stop synchronizing their tail beats, largely because the tail beat frequency increased dramatically. Thus, the anterior and posterior lateral line system appears to have different behavioral functions in fish. Most importantly, we showed that the posterior lateral line system played a major role in determining tail beat synchrony in schooling fish. Without synchronization, swimming efficiency decreases, which can have an impact on the fitness of the individual fish and group.


Asunto(s)
Peces/fisiología , Sistema de la Línea Lateral , Cola (estructura animal)/fisiología , Animales , Conducta Animal , Fenómenos Biomecánicos , Natación
13.
Proc Natl Acad Sci U S A ; 117(19): 10585-10592, 2020 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-32341168

RESUMEN

The anterior body of many fishes is shaped like an airfoil turned on its side. With an oscillating angle to the swimming direction, such an airfoil experiences negative pressure due to both its shape and pitching movements. This negative pressure acts as thrust forces on the anterior body. Here, we apply a high-resolution, pressure-based approach to describe how two fishes, bluegill sunfish (Lepomis macrochirus Rafinesque) and brook trout (Salvelinus fontinalis Mitchill), swimming in the carangiform mode, the most common fish swimming mode, generate thrust on their anterior bodies using leading-edge suction mechanics, much like an airfoil. These mechanics contrast with those previously reported in lampreys-anguilliform swimmers-which produce thrust with negative pressure but do so through undulatory mechanics. The thrust produced on the anterior bodies of these carangiform swimmers through negative pressure comprises 28% of the total thrust produced over the body and caudal fin, substantially decreasing the net drag on the anterior body. On the posterior region, subtle differences in body shape and kinematics allow trout to produce more thrust than bluegill, suggesting that they may swim more effectively. Despite the large phylogenetic distance between these species, and differences near the tail, the pressure profiles around the anterior body are similar. We suggest that such airfoil-like mechanics are highly efficient, because they require very little movement and therefore relatively little active muscular energy, and may be used by a wide range of fishes since many species have appropriately shaped bodies.


Asunto(s)
Fenómenos Biomecánicos/fisiología , Peces/fisiología , Natación/fisiología , Animales , Peces/anatomía & histología , Movimiento , Perciformes/fisiología , Fenómenos Físicos , Trucha/fisiología
14.
Physiol Rep ; 7(23): e14309, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31833235

RESUMEN

In this study, we examined how time perception, a psychological factor, impacts the physiological response to prolonged, voluntary breath holding. Participants (n = 26) held their breath while watching a distorted timer that made it appear as though time was moving up to 40% faster or slower than real time. We monitored total breath-holding duration under different time manipulation conditions as well as the onset of involuntary breathing movements. This physiological breaking point marks the end of the "easy-going" phase of apnea and the start of the "struggle" phase. Based on prior work showing that psychological factors, such as attention and motivation, can influence the length of the struggle phase, we hypothesized that manipulating the perception of time would affect overall breath-holding duration by changing the duration of the struggle phase, but not the easy-going phase. We found that time perception can be successfully manipulated using a distorted timekeeper, and total breath-holding duration correlated with perceived time, not actual time. Contrary to our hypothesis, this effect was attributable to changes in the onset of the physiological breaking point, not changes in the length of the struggle phase. These results demonstrate that unconscious psychological factors and cognitive processes can significantly influence fundamental physiological processes.


Asunto(s)
Contencion de la Respiración , Percepción del Tiempo , Femenino , Humanos , Masculino , Inconsciente en Psicología , Adulto Joven
15.
Sci Rep ; 9(1): 8088, 2019 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-31147566

RESUMEN

Fishes generate force to swim by activating muscles on either side of their flexible bodies. To accelerate, they must produce higher muscle forces, which leads to higher reaction forces back on their bodies from the environment. If their bodies are too flexible, the forces during acceleration could not be transmitted effectively to the environment, but fish can potentially use their muscles to increase the effective stiffness of their body. Here, we quantified red muscle activity during acceleration and steady swimming, looking for patterns that would be consistent with the hypothesis of body stiffening. We used high-speed video, electromyographic recordings, and a new digital inertial measurement unit to quantify body kinematics, red muscle activity, and 3D orientation and centre of mass acceleration during forward accelerations and steady swimming over several speeds. During acceleration, fish co-activated anterior muscle on the left and right side, and activated all muscle sooner and kept it active for a larger fraction of the tail beat cycle. These activity patterns are both known to increase effective stiffness for muscle tissue in vitro, which is consistent with our hypothesis that fish use their red muscle to stiffen their bodies during acceleration. We suggest that during impulsive movements, flexible organisms like fishes can use their muscles not only to generate propulsive power but to tune the effective mechanical properties of their bodies, increasing performance during rapid movements and maintaining flexibility for slow, steady movements.


Asunto(s)
Aceleración , Músculo Esquelético/fisiología , Perciformes/fisiología , Natación/fisiología , Animales , Fenómenos Biomecánicos/fisiología , Electromiografía , Grabación en Video
16.
Biol Bull ; 236(1): 43-54, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30707606

RESUMEN

During animal contests over resources, opponents often signal their fighting ability in an attempt to avoid escalating to physical attack. A reliable signal is beneficial to receivers because it allows them to avoid injuries from engaging in contests they are unlikely to win. However, a signaler could benefit from deceiving an opponent by signaling greater fighting ability or greater aggressive intent than the signaler possesses. Therefore, the reliability of agonistic signals has long intrigued researchers. We investigated whether a colored patch, the meral spot, signals weapon performance in the stomatopod Neogonodactylus oerstedii. During fights over possession of refuges, stomatopods can injure or even kill opponents with their ultrafast strike. We found that darker meral spots correlate with higher strike impulse, which reflects the total force integrated over time. Furthermore, we demonstrate that stomatopods that strike more often with both appendages have darker meral spots and that the first hit in a two-appendage strike has a greater mean strike impulse than that of a single-appendage strike. This indicates that stomatopods with darker meral spots tend to invest more energy in each strike. Our results provide evidence that stomatopods use total reflectance as an honest signal of weapon performance or aggressive intent. This improves our understanding of the evolution of agonistic signals.


Asunto(s)
Agresión/fisiología , Comunicación Animal , Decápodos/fisiología , Animales , Evolución Biológica , Pigmentación/fisiología
17.
J Exp Biol ; 221(Pt 23)2018 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-30291157

RESUMEN

In their natural habitat, fish rarely swim steadily. Instead they frequently accelerate and decelerate. Relatively little is known about how fish produce extra force for acceleration in routine swimming behavior. In this study, we examined the flow around bluegill sunfish Lepomis macrochirus during steady swimming and during forward acceleration, starting at a range of initial swimming speeds. We found that bluegill produce vortices with higher circulation during acceleration, indicating a higher force per tail beat, but they do not substantially redirect the force. We quantified the flow patterns using high speed video and particle image velocimetry and measured acceleration with small inertial measurement units attached to each fish. Even in steady tail beats, the fish accelerates slightly during each tail beat, and the magnitude of the acceleration varies. In steady tail beats, however, a high acceleration is followed by a lower acceleration or a deceleration, so that the swimming speed is maintained; in unsteady tail beats, the fish maintains the acceleration over several tail beats, so that the swimming speed increases. We can thus compare the wake and kinematics during single steady and unsteady tail beats that have the same peak acceleration. During unsteady tail beats when the fish accelerates forward for several tail beats, the wake vortex forces are much higher than those at the same acceleration during single tail beats in steady swimming. The fish also undulates its body at higher amplitude and frequency during unsteady tail beats. These kinematic changes likely increase the fluid dynamic added mass of the body, increasing the forces required to sustain acceleration over several tail beats. The high amplitude and high frequency movements are also likely required to generate the higher forces needed for acceleration. Thus, it appears that bluegill sunfish face a trade-off during acceleration: the body movements required for acceleration also make it harder to accelerate.


Asunto(s)
Aceleración , Hidrodinámica , Perciformes/fisiología , Animales , Fenómenos Biomecánicos , Reología , Natación/fisiología , Grabación en Video
18.
PLoS Comput Biol ; 14(8): e1006324, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30118476

RESUMEN

Like other animals, lampreys have a central pattern generator (CPG) circuit that activates muscles for locomotion and also adjusts the activity to respond to sensory inputs from the environment. Such a feedback system is crucial for responding appropriately to unexpected perturbations, but it is also active during normal unperturbed steady swimming and influences the baseline swimming pattern. In this study, we investigate different functional forms of body curvature-based sensory feedback and evaluate their effects on steady swimming energetics and kinematics, since little is known experimentally about the functional form of curvature feedback. The distributed CPG is modeled as chains of coupled oscillators. Pairs of phase oscillators represent the left and right sides of segments along the lamprey body. These activate muscles that flex the body and move the lamprey through a fluid environment, which is simulated using a full Navier-Stokes model. The emergent curvature of the body then serves as an input to the CPG oscillators, closing the loop. We consider two forms of feedback, each consistent with experimental results on lamprey proprioceptive sensory receptors. The first, referred to as directional feedback, excites or inhibits the oscillators on the same side, depending on the sign of a chosen gain parameter, and has the opposite effect on oscillators on the opposite side. We find that directional feedback does not affect beat frequency, but does change the duration of muscle activity. The second feedback model, referred to as magnitude feedback, provides a symmetric excitatory or inhibitory effect to oscillators on both sides. This model tends to increase beat frequency and reduces the energetic cost to the lamprey when the gain is high and positive. With both types of feedback, the body curvature has a similar magnitude. Thus, these results indicate that the same magnitude of curvature-based feedback on the CPG with different functional forms can cause distinct differences in swimming performance.


Asunto(s)
Generadores de Patrones Centrales/fisiología , Lampreas/fisiología , Natación/fisiología , Animales , Fenómenos Biomecánicos/fisiología , Simulación por Computador , Retroalimentación , Locomoción/fisiología , Modelos Biológicos , Músculos , Red Nerviosa/fisiología , Médula Espinal/fisiología
19.
Integr Comp Biol ; 58(5): 860-873, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-29873726

RESUMEN

Unlike most manmade machines, animals move through their world using flexible bodies and appendages, which bend due to internal muscle and body forces, and also due to forces from the environment. Fishes in particular must cope with fluid dynamic forces that not only resist their overall swimming movements but also may have unsteady flow patterns, vortices, and turbulence, many of which occur more rapidly than what the nervous system can process. Has natural selection led to mechanical properties of fish bodies and their component tissues that can respond very quickly to environmental perturbations? Here, we focus on the mechanical properties of isolated muscle tissue and of the entire intact body in the silver lamprey, Ichthyomyzon unicuspis. We developed two modified work loop protocols to determine the effect of small perturbations on the whole body and on isolated segments of muscle as a function of muscle activation and phase within the swimming cycle. First, we examined how the mechanical properties of the whole lamprey body change depending on the timing of muscle activity. Relative to passive muscle, muscle activation can modulate the effective stiffness by about two-fold and modulate the effective damping by >10-fold depending on the activation phase. Next, we performed a standard work loop test on small sections of axial musculature while adding low-amplitude sinusoidal perturbations at specific frequencies. We modeled the data using a new system identification technique based on time-periodic system analysis and harmonic transfer functions (HTFs) and used the resulting models to predict muscle function under novel conditions. We found that the effective stiffness and damping of muscle varies during the swimming cycle, and that the timing of activation can alter both the magnitude and timing of peak stiffness and damping. Moreover, the response of the isolated muscle was highly nonlinear and length dependent, but the body's response was much more linear. We applied the resulting HTFs from our experiments to explore the effect of pairs of antagonistic muscles. The results suggest that when muscles work against each other as antagonists, the combined system has weaker nonlinearities than either muscle segment alone. Together, these results begin to provide an integrative understanding of how activation timing can tune the mechanical response properties of muscles, enabling fish to swim effectively in their complex and unpredictable environment.


Asunto(s)
Retroalimentación Sensorial , Lampreas/fisiología , Contracción Muscular/fisiología , Músculo Esquelético/fisiología , Natación/fisiología , Animales , Fenómenos Biomecánicos
20.
J Exp Biol ; 221(Pt 8)2018 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-29530974

RESUMEN

Fish use multiple sensory systems, including vision and their lateral line system, to maintain position and speed within a school. Although previous studies have shown that ablating the lateral line alters schooling behavior, no one has examined how the behavior recovers as the sensory system regenerates. We studied how schooling behavior changes in giant danios, Devario aequipinnatus, when their lateral line system is chemically ablated and after the sensory hair cells regenerate. We found that fish could school normally immediately after chemical ablation, but that they had trouble schooling 1-2 weeks after the chemical treatment, when the hair cells had fully regenerated. We filmed groups of giant danios with two high-speed cameras and reconstructed the three-dimensional positions of each fish within a group. One fish in the school was treated with gentamycin to ablate all hair cells. Both types of neuromasts (canal and superficial) were completely ablated after treatment, but fully regenerated after 1 week. We quantified the structure of the school using nearest neighbor distance, bearing, elevation, and the cross-correlation of velocity between each pair of fish. Treated fish maintained a normal position within the school immediately after the lateral line ablation, but could not school normally 1 or 2 weeks after treatment, even though the neuromasts had fully regenerated. By 4-8 weeks post-treatment, the treated fish could again school normally. These results demonstrate that the behavioral recovery after lateral line ablation is a longer process than the regeneration of the hair cells themselves.


Asunto(s)
Conducta Animal/fisiología , Cyprinidae/fisiología , Sistema de la Línea Lateral/efectos de los fármacos , Regeneración , Animales , Conducta Animal/efectos de los fármacos , Gentamicinas/farmacología , Sistema de la Línea Lateral/fisiología , Conducta Espacial/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...