Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Biomech ; 74: 180-186, 2018 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-29773424

RESUMEN

This work describes the design and validation of a novel device, the High-Throughput Degradation Monitoring Device (HDD), for monitoring the degradation of 24 soft tissue samples over incubation periods of several days inside a cell culture incubator. The device quantifies sample degradation by monitoring its deformation induced by a static gravity load. Initial instrument design and experimental protocol development focused on quantifying cartilage degeneration. Characterization of measurement errors, caused mainly by thermal transients and by translating the instrument sensor, demonstrated that HDD can quantify sample degradation with <6 µm precision and <10 µm temperature-induced errors. HDD capabilities were evaluated in a pilot study that monitored the degradation of fresh ex vivo human cartilage samples by collagenase solutions over three days. HDD could robustly resolve the effects of collagenase concentration as small as 0.5 mg/ml. Careful sample preparation resulted in measurements that did not suffer from donor-to-donor variation (coefficient of variance <70%). Due to its unique combination of sample throughput, measurement precision, temporal sampling and experimental versality, HDD provides a novel biomechanics-based experimental platform for quantifying the effects of proteins (cytokines, growth factors, enzymes, antibodies) or small molecules on the degradation of soft tissues or tissue engineering constructs. Thereby, HDD can complement established tools and in vitro models in important applications including drug screening and biomaterial development.


Asunto(s)
Cartílago/metabolismo , Colagenasas/metabolismo , Diseño de Equipo , Anciano , Anciano de 80 o más Años , Fémur/metabolismo , Humanos , Proyectos Piloto
2.
Ann Biomed Eng ; 45(9): 2061-2074, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28573419

RESUMEN

Articular cartilage function relies on its unique mechanical behavior. Cartilage mechanics have been described by several analytic models, whose parameters are usually estimated by fitting their constitutive equations to stress-relaxation data. This procedure can be long and is prone to experimental and fitting errors. Τhis study describes a novel methodology for estimating the biomechanical properties of cartilage samples based on their linearized frequency response, derived by applying a series of small-amplitude harmonic displacements superimposed to a bias strain. The proposed methodology, denoted as linearized frequency-domain method (LFM), was demonstrated by quantifying the effects of collagenase and hyaluronidase on cartilage, where it provided robust cartilage parameter estimates that overall agreed well with estimates obtained by stress-relaxation analysis. LFM was also applied to unveil the strain-dependent nature of porcine cartilage biomechanical parameters. Results showed that increasing the bias strain from 5% to 15% caused a significant decrease in cartilage permeability but did not have significant effect on the compression modulus and the Poisson's ratio. Apart from cartilage, LFM can potentially quantify the strain-dependent nature of tissues and biomaterials, thereby enhance tissue-level understanding on organ physiology and pathology, lead to better computational tissue models, and guide tissue engineering research.


Asunto(s)
Cartílago/química , Fuerza Compresiva , Estrés Mecánico , Animales , Porcinos
3.
Philos Trans A Math Phys Eng Sci ; 368(1917): 2123-39, 2010 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-20308118

RESUMEN

A small number of type I collagen-glycosaminoglycan scaffolds (collagen-GAG scaffolds; CGSs) have unusual biological activity consisting primarily in inducing partial regeneration of organs in the adult mammal. Two of these are currently in use in a variety of clinical settings. CGSs appear to induce regeneration by blocking the adult healing response, following trauma, consisting of wound contraction and scar formation. Several structural determinants of biological activity have been identified, including ligands for binding of fibroblasts to the collagen surface, the mean pore size (which affects ligand density) and the degradation rate (which affects the duration of the wound contraction-blocking activity by the scaffold). Processing variables that affect these determinants include the kinetics of swelling of collagen fibres in acetic acid, freezing of the collagen-GAG suspension and cross-linking of the freeze-dried scaffold. Recent developments in the processing of CGSs include fabrication of scaffolds that are paucidisperse in pore size, scaffolds with gradients in physicochemical properties (and therefore biological activity) and scaffolds that incorporate a mineral component. Advances in the characterization of the pore structure of CGSs have been made using confocal and nonlinear optical microscopy (NLOM). The mechanical behaviour of CGSs, as well as the resistance to degradative enzymes, have been studied. Following seeding with cells (typically fibroblasts), contractile forces in the range 26-450 nN per cell are generated by the cells, leading to buckling of scaffold struts. Ongoing studies of cell-seeded CGSs with NLOM have shown an advantage over the use of confocal microscopy due to the ability of the former method to image the CGS surfaces without staining (which alters its surface ligands), reduced cell photodamage, reduced fluorophore photobleaching and the ability to image deeper inside the scaffold.


Asunto(s)
Materiales Biocompatibles/química , Colágeno/química , Glicosaminoglicanos/química , Andamios del Tejido/química , Animales , Técnicas de Cultivo de Célula/instrumentación , Diferenciación Celular , Reactivos de Enlaces Cruzados/química , Fibroblastos/metabolismo , Humanos , Cinética , Regeneración , Piel/metabolismo , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...