RESUMEN
The molecular pathogenesis of degenerative parkinsonisms, including Parkinson's disease (PD), progressive supranuclear palsy (PSP), and Multiple system atrophy (MSA), remains largely unknown. To gain novel insight into molecular processes associated with these diseases, we conducted a proteome-wide expression study in prefrontal cortex tissue from a cohort of 181 individuals, comprising PD (N = 73), PSP (N = 18), MSA (N = 17) and healthy control (N = 73). Using marker gene profiles, we first assess the cellular composition of the samples and, subsequently, identify distinct protein signatures for each disease, while correcting for cell composition. Our findings indicate that all three diseases are characterized by a structural and/or functional loss of deep cortical neurons, while PD exhibits an additional decrease in somatostatin-expressing interneurons, as well as in endothelial cells. Differential protein expression analysis identified multiple proteins and pathways with disease-specific expression, some of which have previously been associated with parkinsonism or neurodegeneration in general. Notably, we observed a strong mitochondrial signature which was present in both PD and PSP, albeit of a different composition and most pronounced in PSP, but not in MSA where immunological/inflammation-related pathways dominated. Additionally, we identified protein signatures associated with the severity of α-synuclein pathology in PD and showed that these are highly enriched in an upregulation of mitochondrial processes, specifically related to oxidative phosphorylation and in particular respiratory complexes I and IV. We identify multiple novel signatures of protein expression, associated with PD, PSP, and MSA, as well as with the severity of α-synuclein pathology in the PD brain.
RESUMEN
Mitochondrial diseases are associated with neuronal death and mtDNA depletion. Astrocytes respond to injury or stimuli and damage to the central nervous system. Neurodegeneration can cause astrocytes to activate and acquire toxic functions that induce neuronal death. However, astrocyte activation and its impact on neuronal homeostasis in mitochondrial disease remain to be explored. Using patient cells carrying POLG mutations, we generated iPSCs and then differentiated these into astrocytes. POLG astrocytes exhibited mitochondrial dysfunction including loss of mitochondrial membrane potential, energy failure, loss of complex I and IV, disturbed NAD+/NADH metabolism, and mtDNA depletion. Further, POLG derived astrocytes presented an A1-like reactive phenotype with increased proliferation, invasion, upregulation of pathways involved in response to stimulus, immune system process, cell proliferation and cell killing. Under direct and indirect co-culture with neurons, POLG astrocytes manifested a toxic effect leading to the death of neurons. We demonstrate that mitochondrial dysfunction caused by POLG mutations leads not only to intrinsic defects in energy metabolism affecting both neurons and astrocytes, but also to neurotoxic damage driven by astrocytes. These findings reveal a novel role for dysfunctional astrocytes that contribute to the pathogenesis of POLG diseases.
Asunto(s)
Astrocitos , ADN Polimerasa gamma , ADN Polimerasa Dirigida por ADN , Mitocondrias , Mutación , Astrocitos/metabolismo , ADN Polimerasa gamma/genética , ADN Polimerasa gamma/metabolismo , Humanos , Mitocondrias/metabolismo , ADN Polimerasa Dirigida por ADN/genética , ADN Polimerasa Dirigida por ADN/metabolismo , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Neuronas/metabolismo , Potencial de la Membrana Mitocondrial , Células Madre Pluripotentes Inducidas/metabolismo , Células Cultivadas , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/metabolismo , Técnicas de CocultivoRESUMEN
Idiopathic Parkinson's disease (iPD) is believed to have a heterogeneous pathophysiology, but molecular disease subtypes have not been identified. Here, we show that iPD can be stratified according to the severity of neuronal respiratory complex I (CI) deficiency, and identify two emerging disease subtypes with distinct molecular and clinical profiles. The CI deficient (CI-PD) subtype accounts for approximately a fourth of all cases, and is characterized by anatomically widespread neuronal CI deficiency, a distinct cell type-specific gene expression profile, increased load of neuronal mtDNA deletions, and a predilection for non-tremor dominant motor phenotypes. In contrast, the non-CI deficient (nCI-PD) subtype exhibits no evidence of mitochondrial impairment outside the dopaminergic substantia nigra and has a predilection for a tremor dominant phenotype. These findings constitute a step towards resolving the biological heterogeneity of iPD with implications for both mechanistic understanding and treatment strategies.
Asunto(s)
ADN Mitocondrial , Complejo I de Transporte de Electrón , Complejo I de Transporte de Electrón/deficiencia , Mitocondrias , Enfermedades Mitocondriales , Enfermedad de Parkinson , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Humanos , Complejo I de Transporte de Electrón/genética , Complejo I de Transporte de Electrón/metabolismo , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/metabolismo , Masculino , ADN Mitocondrial/genética , Femenino , Mitocondrias/metabolismo , Mitocondrias/genética , Anciano , Sustancia Negra/metabolismo , Sustancia Negra/patología , Persona de Mediana Edad , Fenotipo , Neuronas/metabolismoRESUMEN
The STRAT-PARK initiative aims to provide a platform for stratifying Parkinson's disease (PD) into biological subtypes, using a bottom-up, multidisciplinary biomarker-based and data-driven approach. PD is a heterogeneous entity, exhibiting high interindividual clinicopathological variability. This diversity suggests that PD may encompass multiple distinct biological entities, each driven by different molecular mechanisms. Molecular stratification and identification of disease subtypes is therefore a key priority for understanding and treating PD. STRAT-PARK is a multi-center longitudinal cohort aiming to recruit a total of 2000 individuals with PD and neurologically healthy controls from Norway and Canada, for the purpose of identifying molecular disease subtypes. Clinical assessment is performed annually, whereas biosampling, imaging, and digital and neurophysiological phenotyping occur every second year. The unique feature of STRAT-PARK is the diversity of collected biological material, including muscle biopsies and platelets, tissues particularly useful for mitochondrial biomarker research. Recruitment rate is â¼150 participants per year. By March 2023, 252 participants were included, comprising 204 cases and 48 controls. STRAT-PARK is a powerful stratification initiative anticipated to become a global research resource, contributing to personalized care in PD.
Asunto(s)
Enfermedad de Parkinson , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Biomarcadores , Canadá , Estudios de Cohortes , Estudios Longitudinales , Noruega , Enfermedad de Parkinson/diagnóstico , Enfermedad de Parkinson/fisiopatología , Medicina de Precisión/métodosRESUMEN
In this research, a 3D brain organoid model is developed to study POLG-related encephalopathy, a mitochondrial disease stemming from POLG mutations. Induced pluripotent stem cells (iPSCs) derived from patients with these mutations is utilized to generate cortical organoids, which exhibited typical features of the diseases with POLG mutations, such as altered morphology, neuronal loss, and mitochondiral DNA (mtDNA) depletion. Significant dysregulation is also identified in pathways crucial for neuronal development and function, alongside upregulated NOTCH and JAK-STAT signaling pathways. Metformin treatment ameliorated many of these abnormalities, except for the persistent affliction of inhibitory dopamine-glutamate (DA GLU) neurons. This novel model effectively mirrors both the molecular and pathological attributes of diseases with POLG mutations, providing a valuable tool for mechanistic understanding and therapeutic screening for POLG-related disorders and other conditions characterized by compromised neuronal mtDNA maintenance and complex I deficiency.
Asunto(s)
ADN Polimerasa gamma , Células Madre Pluripotentes Inducidas , Enfermedades Mitocondriales , Organoides , Organoides/metabolismo , Organoides/patología , Humanos , ADN Polimerasa gamma/genética , ADN Polimerasa gamma/metabolismo , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/metabolismo , Enfermedades Mitocondriales/patología , Células Madre Pluripotentes Inducidas/metabolismo , Mutación/genética , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Encéfalo/patología , Encéfalo/metabolismoRESUMEN
Alpers' syndrome is an early-onset neurodegenerative disorder usually caused by biallelic pathogenic variants in the gene encoding the catalytic subunit of polymerase-gamma (POLG), which is essential for mitochondrial DNA (mtDNA) replication. The disease is progressive, incurable, and inevitably it leads to death from drug-resistant status epilepticus. The neurological features of Alpers' syndrome are intractable epilepsy and developmental regression, with no effective treatment; the underlying mechanisms are still elusive, partially due to lack of good experimental models. Here, we generated the patient derived induced pluripotent stem cells (iPSCs) from one Alpers' patient carrying the compound heterozygous mutations of A467T (c.1399G>A) and P589L (c.1766C>T), and further differentiated them into cortical organoids and neural stem cells (NSCs) for mechanistic studies of neural dysfunction in Alpers' syndrome. Patient cortical organoids exhibited a phenotype that faithfully replicated the molecular changes found in patient postmortem brain tissue, as evidenced by cortical neuronal loss and depletion of mtDNA and complex I (CI). Patient NSCs showed mitochondrial dysfunction leading to ROS overproduction and downregulation of the NADH pathway. More importantly, the NAD+ precursor nicotinamide riboside (NR) significantly ameliorated mitochondrial defects in patient brain organoids. Our findings demonstrate that the iPSC model and brain organoids are good in vitro models of Alpers' disease; this first-in-its-kind stem cell platform for Alpers' syndrome enables therapeutic exploration and has identified NR as a viable drug candidate for Alpers' disease and, potentially, other mitochondrial diseases with similar causes.
Asunto(s)
Esclerosis Cerebral Difusa de Schilder , Células Madre Pluripotentes Inducidas , Enfermedades Mitocondriales , Niacinamida/análogos & derivados , Compuestos de Piridinio , Humanos , ADN Polimerasa gamma , NAD/genética , ADN Mitocondrial/genética , MutaciónRESUMEN
Nicotinamide adenine dinucleotide (NAD) replenishment therapy using nicotinamide riboside (NR) shows promise for Parkinson's disease (PD) and other neurodegenerative disorders. However, the optimal dose of NR remains unknown, and doses exceeding 2000 mg daily have not been tested in humans. To evaluate the safety of high-dose NR therapy, we conducted a single-center, randomized, placebo-controlled, double-blind, phase I trial on 20 individuals with PD, randomized 1:1 on NR 1500 mg twice daily (n = 10) or placebo (n = 10) for four weeks. The trial was conducted at the Department of Neurology, Haukeland University Hospital, Bergen, Norway. The primary outcome was safety, defined as the frequency of moderate and severe adverse events. Secondary outcomes were tolerability defined as frequency of mild adverse events, change in the whole blood and urine NAD metabolome, and change in the clinical severity of PD, measured by MDS-UPDRS. All 20 participants completed the trial. The trial met all prespecified outcomes. NR therapy was well tolerated with no moderate or severe adverse events, and no significant difference in mild adverse events. NR therapy was associated with clinical improvement of total MDS-UPDRS scores. However, this change was also associated with a shorter interval since the last levodopa dose. NR greatly augmented the blood NAD metabolome with up to 5-fold increase in blood NAD+ levels. While NR-recipients exhibited a slight initial rise in serum homocysteine levels, the integrity of the methyl donor pool remained intact. Our results support extending the dose range of NR in phase II clinical trials to 3000 mg per day, with appropriate safety monitoring. Clinicaltrials.gov identifier: NCT05344404.
Asunto(s)
Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/tratamiento farmacológico , NAD , Niacinamida , Compuestos de Piridinio/efectos adversos , Método Doble CiegoRESUMEN
Populations in crisis!A global overview of health challenges and policy efforts within the scope of current nutrition issues, from persistent forms of undernutrition, including micronutrient deficiency, to diet-related chronic diseases. Nutrition science has evolved from a therapeutic and prevention emphasis to include a focus on diets and food systems. Working and consensus definitions are needed, as well as guidance related to healthy diets and the emerging issues that require further research and consensus building. Between nutrient deficiency and chronic disease, nutrition has evolved from focusing exclusively on the extremes of overt nutrient deficiency and chronic disease prevention, to equipping bodies with the ability to cope with physiologic, metabolic, and psychological stress. Just what is 'optimal nutrition', is that a valid public health goal, and what terminology is being provided by the nutrition science community? Nutrition research on 'healthspan', resilience, and intrinsic capacity may provide evidence to support optimal nutrition. Finally, experts provide views on ongoing challenges of achieving consensus or acceptance of the various definitions and interventions for health promotion, and how these can inform government health policies.Nutrition topics that receive particular focus in these proceedings include choline, NAD-replenishment in neurodegenerative diseases, and xanthophyll carotenoids. Choline is a crucial nutrient essential for cellular metabolism, requiring consumption from foods or supplements due to inadequate endogenous synthesis. Maternal choline intake is vital for fetal and infant development to prevent neural tube defects. Neurodegenerative diseases pose a growing health challenge, lacking effective therapies. Nutrition, including NAD-replenishing nutrients, might aid prevention. Emerging research indicates xanthophyll carotenoids enhance vision and cognition, potentially impacting age-related diseases.
Asunto(s)
Enfermedades Neurodegenerativas , Ciencias de la Nutrición , Lactante , Niño , Humanos , Salud Global , NAD , Colina , Suplementos Dietéticos , Enfermedad Crónica , XantófilasRESUMEN
BACKGROUND: Epigenetic clocks using DNA methylation (DNAm) to estimate biological age have become popular tools in the study of neurodegenerative diseases. Notably, several recent reports have shown a strikingly similar inverse relationship between accelerated biological aging, as measured by DNAm, and the age of onset of several neurodegenerative disorders, including Parkinson's disease (PD). Common to all of these studies is that they were performed without control subjects and using the exact same measure of accelerated aging: DNAm age minus chronological age. OBJECTIVE: We aimed to assess the validity of these findings in PD, using the same dataset as in the original study, blood DNAm data from the Parkinson's Progression Markers Initiative cohort, but also including control samples in the analyses. METHODS: We replicated the analyses and findings of the previous study and then reanalyzed the dataset incorporating control samples to account for underlying age-related biases. RESULTS: Our reanalysis shows that there is no correlation between age of onset and DNAm age acceleration. Conversely, there is a pattern of overestimating DNAm age in younger and underestimating DNAm age in older individuals in the dataset that entirely explains the previously reported association. CONCLUSIONS: Our findings refute the previously reported inverse relationship between DNAm age acceleration and age of onset in PD. We show that these findings are fully accounted for by an expected over/underestimation of DNAm age in younger/older individuals. Furthermore, this effect is likely to be responsible for nearly identical findings reported in other neurodegenerative diseases. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Asunto(s)
Metilación de ADN , Enfermedad de Parkinson , Humanos , Anciano , Enfermedad de Parkinson/epidemiología , Enfermedad de Parkinson/genética , Epigénesis Genética , Edad de Inicio , Envejecimiento/genéticaRESUMEN
BACKGROUND: Variation in cell composition can dramatically impact analyses in bulk tissue samples. A commonly employed approach to mitigate this issue is to adjust statistical models using estimates of cell abundance derived directly from omics data. While an arsenal of estimation methods exists, the applicability of these methods to brain tissue data and whether or not cell estimates can sufficiently account for confounding cellular composition has not been adequately assessed. METHODS: We assessed the correspondence between different estimation methods based on transcriptomic (RNA sequencing, RNA-seq) and epigenomic (DNA methylation and histone acetylation) data from brain tissue samples of 49 individuals. We further evaluated the impact of different estimation approaches on the analysis of H3K27 acetylation chromatin immunoprecipitation sequencing (ChIP-seq) data from entorhinal cortex of individuals with Alzheimer's disease and controls. RESULTS: We show that even closely adjacent tissue samples from the same Brodmann area vary greatly in their cell composition. Comparison across different estimation methods indicates that while different estimation methods applied to the same data produce highly similar outcomes, there is a surprisingly low concordance between estimates based on different omics data modalities. Alarmingly, we show that cell type estimates may not always sufficiently account for confounding variation in cell composition. CONCLUSIONS: Our work indicates that cell composition estimation or direct quantification in one tissue sample should not be used as a proxy to the cellular composition of another tissue sample from the same brain region of an individual-even if the samples are directly adjacent. The highly similar outcomes observed among vastly different estimation methods, highlight the need for brain benchmark datasets and better validation approaches. Finally, unless validated through complementary experiments, the interpretation of analyses outcomes based on data confounded by cell composition should be done with great caution, and ideally avoided all together.
Asunto(s)
Perfilación de la Expresión Génica , Transcriptoma , Humanos , Perfilación de la Expresión Génica/métodos , Metilación de ADN , Encéfalo , Análisis de Secuencia de ARN/métodosRESUMEN
Replenishing nicotinamide adenine dinucleotide (NAD) via supplementation of nicotinamide riboside (NR) has been shown to confer neuroprotective effects in models of aging and neurodegenerative diseases, including Parkinson's disease (PD). Although generally considered safe, concerns have been raised that NR supplementation could impact methylation dependent reactions, including DNA methylation, because of increased production and methylation dependent breakdown of nicotinamide (NAM). We investigated the effect of NR supplementation on DNA methylation in a double blinded, placebo-controlled trial of 29 human subjects with PD, in blood cells and muscle tissue. Our results show that NR had no impact on DNA methylation homeostasis, including individuals with common pathogenic mutations in the MTHFR gene known to affect one-carbon metabolism. Pathway and methylation variance analyses indicate that there might be minor regulatory responses to NR. We conclude that short-term therapy with high-dose NR for up to 30 days has no deleterious impact on methylation homeostasis.
RESUMEN
Aberrant proteostasis is thought to be implicated in Parkinson's disease (PD), but patient-derived evidence is scant. We hypothesized that impaired proteostasis is reflected as altered transcriptome-proteome correlation in the PD brain. We integrated transcriptomic and proteomic data from prefrontal cortex of PD patients and young and aged controls to assess RNA-protein correlations across samples. The aged brain showed a genome-wide decrease in mRNA-protein correlation. Genes encoding synaptic vesicle proteins showed negative correlations, likely reflecting spatial separation of mRNA and protein into soma and synapses. PD showed a broader transcriptome-proteome decoupling, consistent with a proteome-wide decline in proteostasis. Genes showing negative correlation in PD were enriched for proteasome subunits, indicating accentuated spatial separation of transcript and protein in PD neurons. In addition, PD showed positive correlations for mitochondrial respiratory chain genes, suggesting a tighter regulation in the face of mitochondrial dysfunction. Our results support the hypothesis that aberrant proteasomal function is implicated in PD pathogenesis.
RESUMEN
The structural and functional organization of the mitochondrial respiratory chain (MRC) remains intensely debated. Here, we show the co-existence of two separate MRC organizations in human cells and postmitotic tissues, C-MRC and S-MRC, defined by the preferential expression of three COX7A subunit isoforms, COX7A1/2 and SCAFI (COX7A2L). COX7A isoforms promote the functional reorganization of distinct co-existing MRC structures to prevent metabolic exhaustion and MRC deficiency. Notably, prevalence of each MRC organization is reversibly regulated by the activation state of the pyruvate dehydrogenase complex (PDC). Under oxidative conditions, the C-MRC is bioenergetically more efficient, whereas the S-MRC preferentially maintains oxidative phosphorylation (OXPHOS) upon metabolic rewiring toward glycolysis. We show a link between the metabolic signatures converging at the PDC and the structural and functional organization of the MRC, challenging the widespread notion of the MRC as a single functional unit and concluding that its structural heterogeneity warrants optimal adaptation to metabolic function.
Asunto(s)
Glucólisis , Fosforilación Oxidativa , Humanos , Transporte de Electrón , Membranas Mitocondriales/metabolismo , Complejo Piruvato Deshidrogenasa/metabolismo , Isoformas de Proteínas/metabolismoRESUMEN
BACKGROUND: Active ageing is described as the process of optimizing health, empowerment, and security to enhance the quality of life in the rapidly growing population of older adults. Meanwhile, multimorbidity and neurological disorders, such as Parkinson's disease (PD), lead to global public health and resource limitations. We introduce a novel user-centered paradigm of ageing based on wearable-driven artificial intelligence (AI) that may harness the autonomy and independence that accompany functional limitation or disability, and possibly elevate life expectancy in older adults and people with PD. METHODS: ActiveAgeing is a 4-year, multicentre, mixed method, cyclic study that combines digital phenotyping via commercial devices (Empatica E4, Fitbit Sense, and Oura Ring) with traditional evaluation (clinical assessment scales, in-depth interviews, and clinical consultations) and includes four types of participants: (1) people with PD and (2) their informal caregiver; (3) healthy older adults from the Helgetun living environment in Norway, and (4) people on the Helgetun waiting list. For the first study, each group will be represented by N = 15 participants to test the data acquisition and to determine the sample size for the second study. To suggest lifestyle changes, modules for human expert-based advice, machine-generated advice, and self-generated advice from accessible data visualization will be designed. Quantitative analysis of physiological data will rely on digital signal processing (DSP) and AI techniques. The clinical assessment scales are the Unified Parkinson's Disease Rating Scale (UPDRS), Montreal Cognitive Assessment (MoCA), Geriatric Depression Scale (GDS), Geriatric Anxiety Inventory (GAI), Apathy Evaluation Scale (AES), and the REM Sleep Behaviour Disorder Screening Questionnaire (RBDSQ). A qualitative inquiry will be carried out with individual and focus group interviews and analysed using a hermeneutic approach including narrative and thematic analysis techniques. DISCUSSION: We hypothesise that digital phenotyping is feasible to explore the ageing process from clinical and lifestyle perspectives including older adults and people with PD. Data is used for clinical decision-making by symptom tracking, predicting symptom evolution, and discovering new outcome measures for clinical trials.
Asunto(s)
Enfermedad de Parkinson , Trastorno de la Conducta del Sueño REM , Dispositivos Electrónicos Vestibles , Anciano , Inteligencia Artificial , Humanos , Enfermedad de Parkinson/psicología , Calidad de VidaRESUMEN
While most research suggests mitochondrial DNA (mtDNA) harbors low or no methylation, a few studies claim to report evidence of high-level methylation in the mtDNA. The reasons behind these contradictory results are likely to be methodological but remain largely unexplored. Here, we critically reanalyzed a recent study by Patil et al. (2019) reporting extensive methylation in human mtDNA in a non-CpG context. Our analyses refute the original findings and show that these do not reflect the biology of the tested samples, but rather stem from a combination of methodological and technical pitfalls. The authors employ an oversimplified model that defines as methylated all reference positions with methylation proportions above an arbitrary cutoff of 9%. This substantially exacerbates the overestimation of methylated cytosines due to the selective degradation of unmethylated cytosine-rich regions. Additional limitations are the small sample sizes and lack of sample-specific controls for bisulfite conversion efficiency. In conclusion, using the same dataset employed in the original study by Patil et al., we find no evidence supporting the existence of extensive non-CpG methylation in the human mtDNA.
Asunto(s)
Metilación de ADN , ADN Mitocondrial , Humanos , Islas de CpG/genética , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Citosina/metabolismo , Mitocondrias/genéticaRESUMEN
Idiopathic Parkinson's disease (iPD) is characterized by degeneration of the dopaminergic substantia nigra pars compacta (SNc), typically in the presence of Lewy pathology (LP) and mitochondrial respiratory complex I (CI) deficiency. LP is driven by α-synuclein aggregation, morphologically evolving from early punctate inclusions to Lewy bodies (LBs). The relationship between α-synuclein aggregation and CI deficiency in iPD is poorly understood. While studies in models suggest they are causally linked, observations in human SNc show that LBs preferentially occur in CI intact neurons. Since LBs are end-results of α-synuclein aggregation, we hypothesized that the relationship between LP and CI deficiency may be better reflected in neurons with early-stage α-synuclein pathology. Using quadruple immunofluorescence in SNc tissue from eight iPD subjects, we assessed the relationship between neuronal CI or CIV deficiency and early or late forms of LP. In agreement with previous findings, we did not observe CI-negative neurons with late LP. In contrast, early LP showed a significant predilection for CI-negative neurons (p = 6.3 × 10-5). CIV deficiency was not associated with LP. Our findings indicate that early α-syn aggregation is associated with CI deficiency in iPD, and suggest a double-hit mechanism, where neurons exhibiting both these pathologies are selectively lost.
Asunto(s)
Enfermedad de Parkinson , Complejo I de Transporte de Electrón/deficiencia , Humanos , Enfermedades Mitocondriales , Neuronas/metabolismo , Enfermedad de Parkinson/patología , Sustancia Negra/metabolismo , alfa-Sinucleína/metabolismoRESUMEN
Parkinson's disease (PD) is the most common age-dependent neurodegenerative synucleinopathy. Loss of dopaminergic neurons of the substantia nigra pars compacta, together with region- and cell-specific aggregations of α -synuclein are considered main pathological hallmarks of PD, but its etiopathogenesis remains largely unknown. Mitochondrial dysfunction, in particular quantitative and/or functional deficiencies of the mitochondrial respiratory chain (MRC), has been associated with the disease. However, after decades of research in this field, the pervasiveness and anatomical extent of MRC dysfunction in PD remain largely unknown. Moreover, it is not known whether the observed MRC defects are pathogenic, compensatory responses, or secondary epiphenomena. In this perspective, we give an overview of current evidence for MRC dysfunction in PD, highlight pertinent knowledge gaps, and propose potential strategies for future research.
RESUMEN
While DNA methylation is established as a major regulator of gene expression in the nucleus, the existence of mitochondrial DNA (mtDNA) methylation remains controversial. Here, we characterized the mtDNA methylation landscape in the prefrontal cortex of neurological healthy individuals (n=26) and patients with Parkinson's disease (n=27), using a combination of whole-genome bisulphite sequencing (WGBS) and bisulphite-independent methods. Accurate mtDNA mapping from WGBS data required alignment to an mtDNA reference only, to avoid misalignment to nuclear mitochondrial pseudogenes. Once correctly aligned, WGBS data provided ultra-deep mtDNA coverage (16,723 ± 7,711) and revealed overall very low levels of cytosine methylation. The highest methylation levels (5.49 ± 0.97%) were found on CpG position m.545, located in the heavy-strand promoter 1 region. The m.545 methylation was validated using a combination of methylation-sensitive DNA digestion and quantitative PCR analysis. We detected no association between mtDNA methylation profile and Parkinson's disease. Interestingly, m.545 methylation correlated with the levels of mtDNA transcripts, suggesting a putative role in regulating mtDNA gene expression. In addition, we propose a robust framework for methylation analysis of mtDNA from WGBS data, which is less prone to false-positive findings due to misalignment of nuclear mitochondrial pseudogene sequences.
Asunto(s)
ADN Mitocondrial , Enfermedad de Parkinson , Encéfalo , Islas de CpG , Metilación de ADN , ADN Mitocondrial/genética , Humanos , Enfermedad de Parkinson/genética , Análisis de Secuencia de ADN/métodos , SulfitosRESUMEN
We conducted a double-blinded phase I clinical trial to establish whether nicotinamide adenine dinucleotide (NAD) replenishment therapy, via oral intake of nicotinamide riboside (NR), is safe, augments cerebral NAD levels, and impacts cerebral metabolism in Parkinson's disease (PD). Thirty newly diagnosed, treatment-naive patients received 1,000 mg NR or placebo for 30 days. NR treatment was well tolerated and led to a significant, but variable, increase in cerebral NAD levels-measured by 31phosphorous magnetic resonance spectroscopy-and related metabolites in the cerebrospinal fluid. NR recipients showing increased brain NAD levels exhibited altered cerebral metabolism, measured by 18fluoro-deoxyglucose positron emission tomography, and this was associated with mild clinical improvement. NR augmented the NAD metabolome and induced transcriptional upregulation of processes related to mitochondrial, lysosomal, and proteasomal function in blood cells and/or skeletal muscle. Furthermore, NR decreased the levels of inflammatory cytokines in serum and cerebrospinal fluid. Our findings nominate NR as a potential neuroprotective therapy for PD, warranting further investigation in larger trials.