Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Biol Chem ; 276(3): 1930-7, 2001 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-11054409

RESUMEN

Cells can respond to reductions in oxygen (hypoxia) by metabolic adaptations, quiescence or cell death. The nuclear division cycles of syncytial stage Drosophila melanogaster embryos reversibly arrest upon hypoxia. We examined this rapid arrest in real time using a fusion of green fluorescent protein and histone 2A. In addition to an interphase arrest, mitosis was specifically blocked in metaphase, much like a checkpoint arrest. Nitric oxide, recently proposed as a hypoxia signal in Drosophila, induced a reversible arrest of the nuclear divisions comparable with that induced by hypoxia. Syncytial stage embryos die during prolonged hypoxia, whereas post-gastrulation embryos (cellularized) survive. We examined ATP levels and morphology of syncytial and cellularized embryos arrested by hypoxia, nitric oxide, or cyanide. Upon oxygen deprivation, the ATP levels declined only slightly in cellularized embryos and more substantially in syncytial embryos. Reversal of hypoxia restored ATP levels and relieved the cell cycle and developmental arrests. However, morphological abnormalities suggested that syncytial embryos suffered irreversible disruption of developmental programs. Our results suggest that nitric oxide plays a role in the response of the syncytial embryo to hypoxia but that it is not the sole mediator of these responses.


Asunto(s)
Ciclo Celular , Hipoxia de la Célula , Drosophila/citología , Óxido Nítrico/fisiología , Animales , Células Gigantes/citología , Fosforilación Oxidativa
2.
J Cell Biol ; 151(5): 1093-100, 2000 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-11086010

RESUMEN

Conventional kinesin is a highly processive molecular motor that takes several hundred steps per encounter with a microtubule. Processive motility is believed to result from the coordinated, hand-over-hand motion of the two heads of the kinesin dimer, but the specific factors that determine kinesin's run length (distance traveled per microtubule encounter) are not known. Here, we show that the neck coiled-coil, a structure adjacent to the motor domain, plays an important role in governing the run length. By adding positive charge to the neck coiled-coil, we have created ultra-processive kinesin mutants that have fourfold longer run lengths than the wild-type motor, but that have normal ATPase activity and motor velocity. Conversely, adding negative charge on the neck coiled-coil decreases the run length. The gain in processivity can be suppressed by either proteolytic cleavage of tubulin's negatively charged COOH terminus or by high salt concentrations. Therefore, modulation of processivity by the neck coiled-coil appears to involve an electrostatic tethering interaction with the COOH terminus of tubulin. The ability to readily increase kinesin processivity by mutation, taken together with the strong sequence conservation of the neck coiled-coil, suggests that evolutionary pressures may limit kinesin's run length to optimize its in vivo function.


Asunto(s)
Cinesinas/química , Cinesinas/genética , Proteínas Motoras Moleculares/química , Proteínas Motoras Moleculares/genética , Secuencia de Aminoácidos , Electroquímica , Cinesinas/metabolismo , Proteínas Motoras Moleculares/metabolismo , Datos de Secuencia Molecular , Mutagénesis/fisiología , Mutación Puntual/fisiología , Ingeniería de Proteínas , Estructura Cuaternaria de Proteína , Estructura Secundaria de Proteína/fisiología , Sales (Química) , Tubulina (Proteína)/metabolismo
3.
Nature ; 407(6802): 395-401, 2000 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-11014197

RESUMEN

Protein kinases have proved to be largely resistant to the design of highly specific inhibitors, even with the aid of combinatorial chemistry. The lack of these reagents has complicated efforts to assign specific signalling roles to individual kinases. Here we describe a chemical genetic strategy for sensitizing protein kinases to cell-permeable molecules that do not inhibit wild-type kinases. From two inhibitor scaffolds, we have identified potent and selective inhibitors for sensitized kinases from five distinct subfamilies. Tyrosine and serine/threonine kinases are equally amenable to this approach. We have analysed a budding yeast strain carrying an inhibitor-sensitive form of the cyclin-dependent kinase Cdc28 (CDK1) in place of the wild-type protein. Specific inhibition of Cdc28 in vivo caused a pre-mitotic cell-cycle arrest that is distinct from the G1 arrest typically observed in temperature-sensitive cdc28 mutants. The mutation that confers inhibitor-sensitivity is easily identifiable from primary sequence alignments. Thus, this approach can be used to systematically generate conditional alleles of protein kinases, allowing for rapid functional characterization of members of this important gene family.


Asunto(s)
Alelos , Inhibidores Enzimáticos/farmacología , Inhibidores de Proteínas Quinasas , Proteínas Quinasas/genética , Proteínas de Saccharomyces cerevisiae , Secuencia de Aminoácidos , Proteína Quinasa CDC28 de Saccharomyces cerevisiae/antagonistas & inhibidores , Proteína Quinasa CDC28 de Saccharomyces cerevisiae/genética , Carbazoles/farmacología , Ciclo Celular , Proteínas Fúngicas/antagonistas & inhibidores , Expresión Génica , Humanos , Alcaloides Indólicos , Proteínas Quinasas Activadas por Mitógenos/antagonistas & inhibidores , Datos de Secuencia Molecular , Mutagénesis , Estructura Terciaria de Proteína , Proteínas/farmacología , Saccharomyces cerevisiae , Homología de Secuencia de Aminoácido , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...