Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Nat Immunol ; 25(2): 316-329, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38182669

RESUMEN

Pneumococcal infections cause serious illness and death among older adults. The capsular polysaccharide vaccine PPSV23 and conjugated alternative PCV13 can prevent these infections; yet, underlying immunological responses and baseline predictors remain unknown. We vaccinated 39 older adults (>60 years) with PPSV23 or PCV13 and observed comparable antibody responses (day 28) and plasmablast transcriptional responses (day 10); however, the baseline predictors were distinct. Analyses of baseline flow cytometry and bulk and single-cell RNA-sequencing data revealed a baseline phenotype specifically associated with weaker PCV13 responses, which was characterized by increased expression of cytotoxicity-associated genes, increased frequencies of CD16+ natural killer cells and interleukin-17-producing helper T cells and a decreased frequency of type 1 helper T cells. Men displayed this phenotype more robustly and mounted weaker PCV13 responses than women. Baseline expression levels of a distinct gene set predicted PPSV23 responses. This pneumococcal precision vaccinology study in older adults uncovered distinct baseline predictors that might transform vaccination strategies and initiate novel interventions.


Asunto(s)
Anticuerpos Antibacterianos , Streptococcus pneumoniae , Masculino , Humanos , Femenino , Anciano , Vacunas Conjugadas , Método Doble Ciego , Vacunación , Vacunas Neumococicas , Polisacáridos
3.
bioRxiv ; 2023 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-37961129

RESUMEN

Aging is the greatest risk factor for breast cancer; however, how age-related cellular and molecular events impact cancer initiation is unknown. We investigate how aging rewires transcriptomic and epigenomic programs of mouse mammary glands at single cell resolution, yielding a comprehensive resource for aging and cancer biology. Aged epithelial cells exhibit epigenetic and transcriptional changes in metabolic, pro-inflammatory, or cancer-associated genes. Aged stromal cells downregulate fibroblast marker genes and upregulate markers of senescence and cancer-associated fibroblasts. Among immune cells, distinct T cell subsets (Gzmk+, memory CD4+, γδ) and M2-like macrophages expand with age. Spatial transcriptomics reveal co-localization of aged immune and epithelial cells in situ. Lastly, transcriptional signatures of aging mammary cells are found in human breast tumors, suggesting mechanistic links between aging and cancer. Together, these data uncover that epithelial, immune, and stromal cells shift in proportions and cell identity, potentially impacting cell plasticity, aged microenvironment, and neoplasia risk.

4.
Semin Immunol ; 70: 101842, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37717525

RESUMEN

Vaccines are among the greatest inventions in medicine, leading to the elimination or control of numerous diseases, including smallpox, polio, measles, rubella, and, most recently, COVID-19. Yet, the effectiveness of vaccines varies among individuals. In fact, while some recipients mount a robust response to vaccination that protects them from the disease, others fail to respond. Multiple clinical and epidemiological factors contribute to this heterogeneity in responsiveness. Systems immunology studies fueled by advances in single-cell biology have been instrumental in uncovering pre-vaccination immune cell types and genomic features (i.e., the baseline immune state, BIS) that have been associated with vaccine responsiveness. Here, we review clinical factors that shape the BIS, and the characteristics of the BIS associated with responsiveness to frequently studied vaccines (i.e., influenza, COVID-19, bacterial pneumonia, malaria). Finally, we discuss potential strategies to enhance vaccine responsiveness in high-risk groups, focusing specifically on older adults.


Asunto(s)
COVID-19 , Sarampión , Vacunas , Humanos , Anciano , Sarampión/prevención & control , Vacunación , COVID-19/prevención & control
5.
medRxiv ; 2023 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-37131707

RESUMEN

Pneumococcal infections cause serious illness and death among older adults. A capsular polysaccharide vaccine PPSV23 (Pneumovax®) and a conjugated polysaccharide vaccine PCV13 (Prevnar®) are used to prevent these infections, yet underlying responses, and baseline predictors remain unknown. We recruited and vaccinated 39 older adults (>60 years) with PPSV23 or PCV13. Both vaccines induced strong antibody responses at day 28 and similar plasmablast transcriptional signatures at day 10, however, their baseline predictors were distinct. Analyses of baseline flow cytometry and RNA-seq data (bulk and single cell) revealed a novel baseline phenotype that is specifically associated with weaker PCV13 responses, characterized by i) increased expression of cytotoxicity-associated genes and increased CD16+ NK frequency; ii) increased Th17 and decreased Th1 cell frequency. Men were more likely to display this cytotoxic phenotype and mounted weaker responses to PCV13 than women. Baseline expression levels of a distinct gene set was predictive of PPSV23 responses. This first precision vaccinology study for pneumococcal vaccine responses of older adults uncovered novel and distinct baseline predictors that might transform vaccination strategies and initiate novel interventions.

6.
Cancer Cell ; 41(4): 641-645, 2023 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-37001528

RESUMEN

Age is among the main risk factors for cancer, and any cancer study in adults is faced with an aging tissue and organism. Yet, pre-clinical studies are carried out using young mice and are not able to address the impact of aging and associated comorbidities on disease biology and treatment outcomes. Here, we discuss the limitations of current mouse cancer models and suggest strategies for developing novel models to address these major gaps in knowledge and experimental approaches.


Asunto(s)
Envejecimiento , Neoplasias , Animales , Ratones , Neoplasias/genética , Modelos Animales de Enfermedad , Factores de Riesgo
7.
Hum Fertil (Camb) ; 26(1): 153-161, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36919413

RESUMEN

The aim of this prospective cohort study was to investigate the effect of coronavirus disease 2019 (COVID-19) vaccinations on menstrual cycle and ovarian reserve in reproductive aged-women. Health care providers (n = 258) vaccinated with inactivated (CoronaVac) and mRNA based (Pfizer-BioNTech®) COVID-19 vaccines were included. All subjects completed a gynaecological and menstrual history questionnaire and Anti-Mullerian Hormone (AMH) levels were measured in serum samples collected before first vaccination and at 1st, 3rd, 6th and 9th months. The prevalence of new-onset menstrual dysregulation following vaccination was 20.6% and it was statistically significant compared to baseline (p = 0.001). Menstrual pattern turned back to normal in 59.6% of vaccinated women. Serum AMH levels gradually decreased until 6th month of follow-up compared to baseline (p < 0.001). A significant increase in serum AMH level was observed at 9th month of follow-up compared to 6th month follow-up levels (p < 0.001). The decrease in serum AMH level was statistically significant regardless of serum anti SARS-CoV-2 antibody levels, subgroups of age, occupation, menstrual dysregulation following vaccination and presence of gynaecological diseases. In conclusion, vaccination against SARS-CoV-2 causes a transient decrease on serum AMH levels and moderate irregularities in menstrual pattern increasing with age and is mostly reversible.


Asunto(s)
Hormona Antimülleriana , COVID-19 , Femenino , Humanos , Adulto , Vacunas contra la COVID-19 , Estudios Prospectivos , COVID-19/prevención & control , SARS-CoV-2 , Ciclo Menstrual
8.
Aging Cell ; 22(4): e13792, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36840360

RESUMEN

Diverse mouse strains have different health and life spans, mimicking the diversity among humans. To capture conserved aging signatures, we studied long-lived C57BL/6J and short-lived NZO/HILtJ mouse strains by profiling transcriptomes and epigenomes of immune cells from peripheral blood and the spleen from young and old mice. Transcriptional activation of the AP-1 transcription factor complex, particularly Fos, Junb, and Jun genes, was the most significant and conserved aging signature across tissues and strains. ATAC-seq data analyses showed that the chromatin around these genes was more accessible with age and there were significantly more binding sites for these TFs with age across all studied tissues, targeting pro-inflammatory molecules including Il6. Age-related increases in binding sites of JUN and FOS factors were also conserved in human peripheral blood ATAC-seq data. Single-cell RNA-seq data from the mouse aging cell atlas Tabula Muris Senis showed that the expression of these genes increased with age in B, T, NK cells, and macrophages, with macrophages from old mice expressing these molecules more abundantly than other cells. Functional data showed that upon myeloid cell activation via poly(I:C), the levels of JUN protein and its binding activity increased more significantly in spleen cells from old compared to young mice. In addition, upon activation, old cells produced more IL6 compared to young cells. In sum, we showed that the aging-related transcriptional activation of Jun and Fos family members in AP-1 complex is conserved across immune tissues and long- and short-living mouse strains, possibly contributing to increased inflammation with age.


Asunto(s)
Proteínas Proto-Oncogénicas c-fos , Factor de Transcripción AP-1 , Animales , Humanos , Ratones , Envejecimiento/genética , Interleucina-6/metabolismo , Ratones Endogámicos C57BL , Proteínas Proto-Oncogénicas c-fos/genética , Proteínas Proto-Oncogénicas c-fos/metabolismo , Proteínas Proto-Oncogénicas c-jun/genética , Proteínas Proto-Oncogénicas c-jun/metabolismo , Factor de Transcripción AP-1/genética , Factor de Transcripción AP-1/metabolismo , Activación Transcripcional
9.
Cell Rep ; 42(3): 112156, 2023 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-36842088

RESUMEN

Monocytes can differentiate into macrophages (Mo-Macs) or dendritic cells (Mo-DCs). The cytokine granulocyte-macrophage colony-stimulating factor (GM-CSF) induces the differentiation of monocytes into Mo-Macs, while the combination of GM-CSF/interleukin (IL)-4 is widely used to generate Mo-DCs for clinical applications and to study human DC biology. Here, we report that pharmacological inhibition of the nuclear receptor peroxisome proliferator-activated receptor gamma (PPARγ) in the presence of GM-CSF and the absence of IL-4 induces monocyte differentiation into Mo-DCs. Remarkably, we find that simultaneous inhibition of PPARγ and the nutrient sensor mammalian target of rapamycin complex 1 (mTORC1) induces the differentiation of Mo-DCs with stronger phenotypic stability, superior immunogenicity, and a transcriptional profile characterized by a strong type I interferon (IFN) signature, a lower expression of a large set of tolerogenic genes, and the differential expression of several transcription factors compared with GM-CSF/IL-4 Mo-DCs. Our findings uncover a pathway that tailors Mo-DC differentiation with potential implications in the fields of DC vaccination and cancer immunotherapy.


Asunto(s)
Factor Estimulante de Colonias de Granulocitos y Macrófagos , Monocitos , Humanos , Monocitos/metabolismo , Factor Estimulante de Colonias de Granulocitos y Macrófagos/farmacología , Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , PPAR gamma/metabolismo , Interleucina-4/farmacología , Interleucina-4/metabolismo , Células Dendríticas/metabolismo , Diferenciación Celular/fisiología , Células Cultivadas
10.
PLoS Comput Biol ; 17(12): e1009670, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34898596

RESUMEN

Cis-Regulatory elements (cis-REs) include promoters, enhancers, and insulators that regulate gene expression programs via binding of transcription factors. ATAC-seq technology effectively identifies active cis-REs in a given cell type (including from single cells) by mapping accessible chromatin at base-pair resolution. However, these maps are not immediately useful for inferring specific functions of cis-REs. For this purpose, we developed a deep learning framework (CoRE-ATAC) with novel data encoders that integrate DNA sequence (reference or personal genotypes) with ATAC-seq cut sites and read pileups. CoRE-ATAC was trained on 4 cell types (n = 6 samples/replicates) and accurately predicted known cis-RE functions from 7 cell types (n = 40 samples) that were not used in model training (mean average precision = 0.80, mean F1 score = 0.70). CoRE-ATAC enhancer predictions from 19 human islet samples coincided with genetically modulated gain/loss of enhancer activity, which was confirmed by massively parallel reporter assays (MPRAs). Finally, CoRE-ATAC effectively inferred cis-RE function from aggregate single nucleus ATAC-seq (snATAC) data from human blood-derived immune cells that overlapped with known functional annotations in sorted immune cells, which established the efficacy of these models to study cis-RE functions of rare cells without the need for cell sorting. ATAC-seq maps from primary human cells reveal individual- and cell-specific variation in cis-RE activity. CoRE-ATAC increases the functional resolution of these maps, a critical step for studying regulatory disruptions behind diseases.


Asunto(s)
Secuenciación de Inmunoprecipitación de Cromatina/métodos , Aprendizaje Profundo , Secuencias Reguladoras de Ácidos Nucleicos/genética , Análisis de la Célula Individual/métodos , Células Cultivadas , Biología Computacional , ADN/análisis , ADN/genética , Humanos , Islotes Pancreáticos/citología , Monocitos/citología
11.
Nat Commun ; 12(1): 5242, 2021 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-34475398

RESUMEN

Genome-wide association studies (GWAS) have linked single nucleotide polymorphisms (SNPs) at >250 loci in the human genome to type 2 diabetes (T2D) risk. For each locus, identifying the functional variant(s) among multiple SNPs in high linkage disequilibrium is critical to understand molecular mechanisms underlying T2D genetic risk. Using massively parallel reporter assays (MPRA), we test the cis-regulatory effects of SNPs associated with T2D and altered in vivo islet chromatin accessibility in MIN6 ß cells under steady state and pathophysiologic endoplasmic reticulum (ER) stress conditions. We identify 1,982/6,621 (29.9%) SNP-containing elements that activate transcription in MIN6 and 879 SNP alleles that modulate MPRA activity. Multiple T2D-associated SNPs alter the activity of short interspersed nuclear element (SINE)-containing elements that are strongly induced by ER stress. We identify 220 functional variants at 104 T2D association signals, narrowing 54 signals to a single candidate SNP. Together, this study identifies elements driving ß cell steady state and ER stress-responsive transcriptional activation, nominates causal T2D SNPs, and uncovers potential roles for repetitive elements in ß cell transcriptional stress response and T2D genetics.


Asunto(s)
Diabetes Mellitus Tipo 2/genética , Estrés del Retículo Endoplásmico/genética , Células Secretoras de Insulina/patología , Polimorfismo de Nucleótido Simple , Activación Transcripcional/genética , Alelos , Animales , Línea Celular , Cromatina/metabolismo , Diabetes Mellitus Tipo 2/patología , Estudio de Asociación del Genoma Completo , Humanos , Ratones , Sitios de Carácter Cuantitativo , Elementos de Nucleótido Esparcido Corto/genética
12.
Genome Biol ; 22(1): 252, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34465366

RESUMEN

Detecting multiplets in single nucleus (sn)ATAC-seq data is challenging due to data sparsity and limited dynamic range. AMULET (ATAC-seq MULtiplet Estimation Tool) enumerates regions with greater than two uniquely aligned reads across the genome to effectively detect multiplets. We evaluate the method by generating snATAC-seq data in the human blood and pancreatic islet samples. AMULET has high precision, estimated via donor-based multiplexing, and high recall, estimated via simulated multiplets, compared to alternatives and identifies multiplets most effectively when a certain read depth of 25K median valid reads per nucleus is achieved.


Asunto(s)
Secuenciación de Inmunoprecipitación de Cromatina , Programas Informáticos , Anciano , ADN/genética , Humanos , Leucocitos Mononucleares/metabolismo , Funciones de Verosimilitud , Transposasas/metabolismo
13.
Front Immunol ; 12: 636720, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33815388

RESUMEN

Immune cell activation assays have been widely used for immune monitoring and for understanding disease mechanisms. However, these assays are typically limited in scope. A holistic study of circulating immune cell responses to different activators is lacking. Here we developed a cost-effective high-throughput multiplexed single-cell RNA-seq combined with epitope tagging (CITE-seq) to determine how classic activators of T cells (anti-CD3 coupled with anti-CD28) or monocytes (LPS) alter the cell composition and transcriptional profiles of peripheral blood mononuclear cells (PBMCs) from healthy human donors. Anti-CD3/CD28 treatment activated all classes of lymphocytes either directly (T cells) or indirectly (B and NK cells) but reduced monocyte numbers. Activated T and NK cells expressed senescence and effector molecules, whereas activated B cells transcriptionally resembled autoimmune disease- or age-associated B cells (e.g., CD11c, T-bet). In contrast, LPS specifically targeted monocytes and induced two main states: early activation characterized by the expression of chemoattractants and a later pro-inflammatory state characterized by expression of effector molecules. These data provide a foundation for future immune activation studies with single cell technologies (https://czi-pbmc-cite-seq.jax.org/).


Asunto(s)
Leucocitos Mononucleares/inmunología , Activación de Linfocitos/genética , Adulto , Anticuerpos Monoclonales/inmunología , Antígenos CD28/inmunología , Complejo CD3/inmunología , Células Cultivadas , Senescencia Celular/genética , Quimiotaxis/genética , Femenino , Perfilación de la Expresión Génica , Ensayos Analíticos de Alto Rendimiento , Humanos , Inmunización , Lipopolisacáridos/inmunología , Masculino , Análisis de la Célula Individual , Adulto Joven
14.
Front Aging ; 22021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35128530

RESUMEN

Aging has emerged as the greatest and most prevalent risk factor for the development of severe COVID-19 infection and death following exposure to the SARS-CoV-2 virus. The presence of multiple co-existing chronic diseases and conditions of aging further enhances this risk. Biological aging not only enhances the risk of chronic diseases, but the presence of such conditions further accelerates varied biological processes or "hallmarks" implicated in aging. Given growing evidence that it is possible to slow the rate of many biological aging processes using pharmacological compounds has led to the proposal that such geroscience-guided interventions may help enhance immune resilience and improve outcomes in the face of SARS-CoV-2 infection. Our review of the literature indicates that most, if not all, hallmarks of aging may contribute to the enhanced COVID-19 vulnerability seen in frail older adults. Moreover, varied biological mechanisms implicated in aging do not function in isolation from each other, and exhibit intricate effects on each other. With all of these considerations in mind, we highlight limitations of current strategies mostly focused on individual single mechanisms, and we propose an approach which is far more multidisciplinary and systems-based emphasizing network topology of biological aging and geroscience-guided approaches to COVID-19.

15.
Immun Ageing ; 17: 13, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32457811

RESUMEN

While Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is disrupting lives across the globe for everyone, it has a more devastating impact on the health of older adults, especially that of older men. This pandemic has highlighted the crucial importance of considering an individual's age and biological sex in the clinic in addition to other confounding diseases (Kuchel, G.A, J Am Geriatr Soc, 67, 203, 2019, Tannenbaum, C., Nature, 575 451-458, 2009) As an interdisciplinary team of scientists in immunology, hematology, genomics, bioinformatics, and geriatrics, we have been studying how age and sex shape the human immune system. Herein we reflect on how our recent findings on the alterations of the immune system in aging might contribute to our current understanding of COVID-19 infection rate and disease risk.

16.
Nat Immunol ; 21(6): 684-694, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32231301

RESUMEN

Aging is associated with remodeling of the immune system to enable the maintenance of life-long immunity. In the CD8+ T cell compartment, aging results in the expansion of highly differentiated cells that exhibit characteristics of cellular senescence. Here we found that CD27-CD28-CD8+ T cells lost the signaling activity of the T cell antigen receptor (TCR) and expressed a protein complex containing the agonistic natural killer (NK) receptor NKG2D and the NK adaptor molecule DAP12, which promoted cytotoxicity against cells that expressed NKG2D ligands. Immunoprecipitation and imaging cytometry indicated that the NKG2D-DAP12 complex was associated with sestrin 2. The genetic inhibition of sestrin 2 resulted in decreased expression of NKG2D and DAP12 and restored TCR signaling in senescent-like CD27-CD28-CD8+ T cells. Therefore, during aging, sestrins induce the reprogramming of non-proliferative senescent-like CD27-CD28-CD8+ T cells to acquire a broad-spectrum, innate-like killing activity.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Senescencia Celular/inmunología , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Proteínas Nucleares/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Citotoxicidad Inmunológica , Perfilación de la Expresión Génica , Humanos , Proteínas de la Membrana/metabolismo , Subfamilia K de Receptores Similares a Lectina de Células NK/metabolismo , Proteínas Nucleares/metabolismo , Receptores de Antígenos de Linfocitos T/metabolismo , Receptores de Células Asesinas Naturales/metabolismo , Transducción de Señal , Fiebre Amarilla/genética , Fiebre Amarilla/inmunología , Fiebre Amarilla/metabolismo , Fiebre Amarilla/virología , Virus de la Fiebre Amarilla/inmunología
17.
Bioinformatics ; 36(11): 3582-3584, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32119082

RESUMEN

SUMMARY: Single-cell RNA-sequencing (scRNA-seq) technology enables studying gene expression programs from individual cells. However, these data are subject to diverse sources of variation, including 'unwanted' variation that needs to be removed in downstream analyses (e.g. batch effects) and 'wanted' or biological sources of variation (e.g. variation associated with a cell type) that needs to be precisely described. Surrogate variable analysis (SVA)-based algorithms, are commonly used for batch correction and more recently for studying 'wanted' variation in scRNA-seq data. However, interpreting whether these variables are biologically meaningful or stemming from technical reasons remains a challenge. To facilitate the interpretation of surrogate variables detected by algorithms including IA-SVA, SVA or ZINB-WaVE, we developed an R Shiny application [Visual Surrogate Variable Analysis (V-SVA)] that provides a web-browser interface for the identification and annotation of hidden sources of variation in scRNA-seq data. This interactive framework includes tools for discovery of genes associated with detected sources of variation, gene annotation using publicly available databases and gene sets, and data visualization using dimension reduction methods. AVAILABILITY AND IMPLEMENTATION: The V-SVA Shiny application is publicly hosted at https://vsva.jax.org/ and the source code is freely available at https://github.com/nlawlor/V-SVA. CONTACT: leed13@miamioh.edu or duygu.ucar@jax.org. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Perfilación de la Expresión Génica , RNA-Seq , Análisis de Secuencia de ARN , Análisis de la Célula Individual , Programas Informáticos
18.
Nat Commun ; 11(1): 751, 2020 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-32029736

RESUMEN

Differences in immune function and responses contribute to health- and life-span disparities between sexes. However, the role of sex in immune system aging is not well understood. Here, we characterize peripheral blood mononuclear cells from 172 healthy adults 22-93 years of age using ATAC-seq, RNA-seq, and flow cytometry. These data reveal a shared epigenomic signature of aging including declining naïve T cell and increasing monocyte and cytotoxic cell functions. These changes are greater in magnitude in men and accompanied by a male-specific decline in B-cell specific loci. Age-related epigenomic changes first spike around late-thirties with similar timing and magnitude between sexes, whereas the second spike is earlier and stronger in men. Unexpectedly, genomic differences between sexes increase after age 65, with men having higher innate and pro-inflammatory activity and lower adaptive activity. Impact of age and sex on immune phenotypes can be visualized at https://immune-aging.jax.org to provide insights into future studies.


Asunto(s)
Envejecimiento/inmunología , Caracteres Sexuales , Adulto , Anciano , Anciano de 80 o más Años , Envejecimiento/genética , Linfocitos B/inmunología , Secuenciación de Inmunoprecipitación de Cromatina , Epigénesis Genética , Femenino , Citometría de Flujo , Humanos , Leucocitos Mononucleares/clasificación , Leucocitos Mononucleares/inmunología , Masculino , Persona de Mediana Edad , Modelos Inmunológicos , Monocitos/inmunología , RNA-Seq , Transcriptoma , Adulto Joven
19.
Cell Rep ; 26(3): 788-801.e6, 2019 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-30650367

RESUMEN

EndoC-ßH1 is emerging as a critical human ß cell model to study the genetic and environmental etiologies of ß cell (dys)function and diabetes. Comprehensive knowledge of its molecular landscape is lacking, yet required, for effective use of this model. Here, we report chromosomal (spectral karyotyping), genetic (genotyping), epigenomic (ChIP-seq and ATAC-seq), chromatin interaction (Hi-C and Pol2 ChIA-PET), and transcriptomic (RNA-seq and miRNA-seq) maps of EndoC-ßH1. Analyses of these maps define known (e.g., PDX1 and ISL1) and putative (e.g., PCSK1 and mir-375) ß cell-specific transcriptional cis-regulatory networks and identify allelic effects on cis-regulatory element use. Importantly, comparison with maps generated in primary human islets and/or ß cells indicates preservation of chromatin looping but also highlights chromosomal aberrations and fetal genomic signatures in EndoC-ßH1. Together, these maps, and a web application we created for their exploration, provide important tools for the design of experiments to probe and manipulate the genetic programs governing ß cell identity and (dys)function in diabetes.


Asunto(s)
Redes Reguladoras de Genes/genética , Células Secretoras de Insulina/metabolismo , Línea Celular , Humanos
20.
Nat Med ; 25(1): 75-81, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30478422

RESUMEN

Understanding the mechanisms underlying autoantibody development will accelerate therapeutic target identification in autoimmune diseases such as systemic lupus erythematosus (SLE)1. Follicular helper T cells (TFH cells) have long been implicated in SLE pathogenesis. Yet a fraction of autoantibodies in individuals with SLE are unmutated, supporting that autoreactive B cells also differentiate outside germinal centers2. Here, we describe a CXCR5-CXCR3+ programmed death 1 (PD1)hiCD4+ helper T cell population distinct from TFH cells and expanded in both SLE blood and the tubulointerstitial areas of individuals with proliferative lupus nephritis. These cells produce interleukin-10 (IL-10) and accumulate mitochondrial reactive oxygen species as the result of reverse electron transport fueled by succinate. Furthermore, they provide B cell help, independently of IL-21, through IL-10 and succinate. Similar cells are generated in vitro upon priming naive CD4+ T cells with plasmacytoid dendritic cells activated with oxidized mitochondrial DNA, a distinct class of interferogenic toll-like receptor 9 ligand3. Targeting this pathway might blunt the initiation and/or perpetuation of extrafollicular humoral responses in SLE.


Asunto(s)
Linfocitos B/inmunología , Linfocitos T CD4-Positivos/inmunología , Interleucina-10/metabolismo , Lupus Eritematoso Sistémico/inmunología , Ácido Succínico/metabolismo , Proliferación Celular , ADN Mitocondrial/genética , Células Dendríticas/metabolismo , Humanos , Memoria Inmunológica , Lupus Eritematoso Sistémico/patología , Nefritis Lúpica/inmunología , Oxidación-Reducción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA