Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 20549, 2023 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-37996513

RESUMEN

We introduce a three-dimensional mathematical model for the dynamics of vascular endothelial cells during sprouting angiogenesis. Angiogenesis is the biological process by which new blood vessels form from existing ones. It has been the subject of numerous theoretical models. These models have successfully replicated various aspects of angiogenesis. Recent studies using particle-based models have highlighted the significant influence of cell shape on network formation, with elongated cells contributing to the formation of branching structures. While most mathematical models are two-dimensional, we aim to investigate whether ellipsoids also form branch-like structures and how their shape affects the pattern. In our model, the shape of a vascular endothelial cell is represented as a spheroid, and a discrete dynamical system is constructed based on the simple assumption of two-body interactions. Numerical simulations demonstrate that our model reproduces the patterns of elongation and branching observed in the early stages of angiogenesis. We show that the pattern formation of the cell population is strongly dependent on the cell shape. Finally, we demonstrate that our current mathematical model reproduces the cell behaviours, specifically cell-mixing, observed in sprouts.


Asunto(s)
Células Endoteliales , Neovascularización Fisiológica , Morfogénesis , Modelos Teóricos , Fenómenos Fisiológicos Cardiovasculares
2.
Nat Commun ; 14(1): 5398, 2023 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-37669937

RESUMEN

Hematopoietic progenitors are enriched in the endocardial cushion and contribute, in a Nkx2-5-dependent manner, to tissue macrophages required for the remodeling of cardiac valves and septa. However, little is known about the molecular mechanism of endocardial-hematopoietic transition. In the current study, we identified the regulatory network of endocardial hematopoiesis. Signal network analysis from scRNA-seq datasets revealed that genes in Notch and retinoic acid (RA) signaling are significantly downregulated in Nkx2-5-null endocardial cells. In vivo and ex vivo analyses validate that the Nkx2-5-Notch axis is essential for the generation of both hemogenic and cushion endocardial cells, and the suppression of RA signaling via Dhrs3 expression plays important roles in further differentiation into macrophages. Genetic ablation study revealed that these macrophages are essential in cardiac valve remodeling. In summary, the study demonstrates that the Nkx2-5/Notch/RA signaling plays a pivotal role in macrophage differentiation from hematopoietic progenitors.


Asunto(s)
Endocardio , Macrófagos , Histiocitos , Diferenciación Celular , Tretinoina
3.
iScience ; 26(7): 107051, 2023 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-37426350

RESUMEN

Angiogenesis is a sequential process to extend new blood vessels from preexisting ones by sprouting and branching. During angiogenesis, endothelial cells (ECs) exhibit inhomogeneous multicellular behaviors referred to as "cell mixing," in which ECs repetitively exchange their relative positions, but the underlying mechanism remains elusive. Here we identified the coordinated linear and rotational movements potentiated by cell-cell contact as drivers of sprouting angiogenesis using in vitro and in silico approaches. VE-cadherin confers the coordinated linear motility that facilitated forward sprout elongation, although it is dispensable for rotational movement, which was synchronous without VE-cadherin. Mathematical modeling recapitulated the EC motility in the two-cell state and angiogenic morphogenesis with the effects of VE-cadherin-knockout. Finally, we found that VE-cadherin-dependent EC compartmentalization potentiated branch elongations, and confirmed this by mathematical simulation. Collectively, we propose a way to understand angiogenesis, based on unique EC behavioral properties that are partially dependent on VE-cadherin function.

4.
J Clin Invest ; 133(4)2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36637912

RESUMEN

Mutations of G protein-coupled receptors (GPCRs) cause various human diseases, but the mechanistic details are limited. Here, we establish p.E303K in the gene encoding the endothelin receptor type A (ETAR/EDNRA) as a recurrent mutation causing mandibulofacial dysostosis with alopecia (MFDA), with craniofacial changes similar to those caused by p.Y129F. Mouse models carrying either of these missense mutations exhibited a partial maxillary-to-mandibular transformation, which was rescued by deleting the ligand endothelin 3 (ET3/EDN3). Pharmacological experiments confirmed the causative ETAR mutations as gain of function, dependent on ET3. To elucidate how an amino acid substitution far from the ligand binding site can increase ligand affinity, we used molecular dynamics (MD) simulations. E303 is located at the intracellular end of transmembrane domain 6, and its replacement by a lysine increased flexibility of this portion of the helix, thus favoring G protein binding and leading to G protein-mediated enhancement of agonist affinity. The Y129F mutation located under the ligand binding pocket reduced the sodium-water network, thereby affecting the extracellular portion of helices in favor of ET3 binding. These findings provide insight into the pathogenesis of MFDA and into allosteric mechanisms regulating GPCR function, which may provide the basis for drug design targeting GPCRs.


Asunto(s)
Disostosis Mandibulofacial , Animales , Ratones , Humanos , Disostosis Mandibulofacial/genética , Mutación con Ganancia de Función , Ligandos , Sitios de Unión , Mutación , Receptores Acoplados a Proteínas G/genética , Unión Proteica , Alopecia/genética , Sitio Alostérico
5.
Dev Dyn ; 2022 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-36038963

RESUMEN

BACKGROUND: The somatopleure serves as the primordium of the amnion, an extraembryonic membrane surrounding the embryo. Recently, we have reported that amniogenic somatopleural cells (ASCs) not only form the amnion but also migrate into the embryo and differentiate into cardiomyocytes and vascular endothelial cells. However, detailed differentiation processes and final distributions of these intra-embryonic ASCs (hereafter referred to as iASCs) remain largely unknown. RESULTS: By quail-chick chimera analysis, we here show that iASCs differentiate into various cell types including cardiomyocytes, smooth muscle cells, cardiac interstitial cells, and vascular endothelial cells. In the pharyngeal region, they distribute selectively into the thyroid gland and differentiate into vascular endothelial cells to form intra-thyroid vasculature. Explant culture experiments indicated sequential requirement of fibroblast growth factor (FGF) and vascular endothelial growth factor (VEGF) signaling for endothelial differentiation of iASCs. Single-cell transcriptome analysis further revealed heterogeneity and the presence of hemangioblast-like cell population within ASCs, with a switch from FGF to VEGF receptor gene expression. CONCLUSION: The present study demonstrates novel roles of ASCss especially in heart and thyroid development. It will provide a novel clue for understanding the cardiovascular development of amniotes from embryological and evolutionary perspectives.

6.
iScience ; 24(4): 102305, 2021 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-33870127

RESUMEN

Blood and lymphatic vessels surrounding the heart develop through orchestrated processes from cells of different origins. In particular, cells around the outflow tract which constitute a primordial transient vasculature, referred to as aortic subepicardial vessels, are crucial for the establishment of coronary artery stems and cardiac lymphatic vessels. Here, we revealed that the epicardium and pericardium-derived Semaphorin 3E (Sema3E) and its receptor, PlexinD1, play a role in the development of the coronary stem, as well as cardiac lymphatic vessels. In vitro analyses demonstrated that Sema3E may demarcate areas to repel PlexinD1-expressing lymphatic endothelial cells, resulting in proper coronary and lymphatic vessel formation. Furthermore, inactivation of Sema3E-PlexinD1 signaling improved the recovery of cardiac function by increasing reactive lymphangiogenesis in an adult mouse model of myocardial infarction. These findings may lead to therapeutic strategies that target Sema3E-PlexinD1 signaling in coronary artery diseases.

7.
Dev Biol ; 402(2): 162-74, 2015 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-25889273

RESUMEN

Most gnathostomata craniofacial structures derive from pharyngeal arches (PAs), which are colonized by cranial neural crest cells (CNCCs). The anteroposterior and dorsoventral identities of CNCCs are defined by the combinatorial expression of Hox and Dlx genes. The mechanisms associating characteristic Hox/Dlx expression patterns with the topology and morphology of PAs derivatives are only partially known; a better knowledge of these processes might lead to new concepts on the origin of taxon-specific craniofacial morphologies and of certain craniofacial malformations. Here we show that ectopic expression of Hoxa2 in Hox-negative CNCCs results in distinct phenotypes in different CNCC subpopulations. Namely, while ectopic Hoxa2 expression is sufficient for the morphological and molecular transformation of the first PA (PA1) CNCC derivatives into the second PA (PA2)-like structures, this same genetic alteration does not provoke the transformation of derivatives of other CNCC subpopulations, but severely impairs their development. Ectopic Hoxa2 expression results in the transformation of the proximal Meckel's cartilage and of the malleus, two ventral PA1 CNCCs derivatives, into a supernumerary styloid process (SP), a PA2-derived mammalian-specific skeletal structure. These results, together with experiments to inactivate and ectopically activate the Edn1-Dlx5/6 pathway, indicate a dorsoventral PA2 (hyomandibular/ceratohyal) boundary passing through the middle of the SP. The present findings suggest context-dependent function of Hoxa2 in CNCC regional specification and morphogenesis, and provide novel insights into the evolution of taxa-specific patterning of PA-derived structures.


Asunto(s)
Región Branquial/embriología , Regulación del Desarrollo de la Expresión Génica/fisiología , Proteínas de Homeodominio/metabolismo , Morfogénesis/fisiología , Cresta Neural/metabolismo , Azul Alcián , Animales , Antraquinonas , Región Branquial/metabolismo , Cartilla de ADN/genética , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica/genética , Hibridación in Situ , Ratones , Ratones Mutantes , Morfogénesis/genética , Cresta Neural/embriología , Reacción en Cadena en Tiempo Real de la Polimerasa
8.
Mech Dev ; 130(11-12): 553-66, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23933587

RESUMEN

Endothelin-1 (Edn1), originally identified as a vasoconstrictor peptide, is involved in the development of cranial/cardiac neural crest-derived tissues and organs. In craniofacial development, Edn1 binds to Endothelin type-A receptor (Ednra) to induce homeobox genes Dlx5/Dlx6 and determines the mandibular identity in the first pharyngeal arch. However, it remains unsolved whether this pathway is also critical for pharyngeal arch artery development to form thoracic arteries. Here, we show that the Edn1/Ednra signaling is involved in pharyngeal artery development by controlling the fate of neural crest cells through a Dlx5/Dlx6-independent mechanism. Edn1 and Ednra knock-out mice demonstrate abnormalities in pharyngeal arch artery patterning, which include persistent first and second pharyngeal arteries, resulting in additional branches from common carotid arteries. Neural crest cell labeling with Wnt1-Cre transgene and immunostaining for smooth muscle cell markers revealed that neural crest cells abnormally differentiate into smooth muscle cells at the first and second pharyngeal arteries of Ednra knock-out embryos. By contrast, Dlx5/Dlx6 knockout little affect the development of pharyngeal arch arteries and coronary arteries, the latter of which is also contributed by neural crest cells through an Edn-dependent mechanism. These findings indicate that the Edn1/Ednra signaling regulates neural crest differentiation to ensure the proper patterning of pharyngeal arch arteries, which is independent of the regional identification of the pharyngeal arches along the dorsoventral axis mediated by Dlx5/Dlx6.


Asunto(s)
Arterias/metabolismo , Tipificación del Cuerpo/genética , Región Branquial/metabolismo , Endotelina-1/genética , Cresta Neural/metabolismo , Receptores de Endotelina/genética , Animales , Arterias/anomalías , Región Branquial/anomalías , Diferenciación Celular , Embrión de Mamíferos , Endotelina-1/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Recombinación Homóloga , Integrasas/genética , Integrasas/metabolismo , Ratones , Ratones Noqueados , Miocitos del Músculo Liso/citología , Miocitos del Músculo Liso/metabolismo , Cresta Neural/anomalías , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Receptores de Endotelina/metabolismo , Transducción de Señal
9.
Nat Commun ; 3: 1267, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23232397

RESUMEN

Neural crest cells constitute a multipotent cell population that gives rise to diverse cell lineages. The neural crest arising from the postotic hindbrain is known as the 'cardiac' neural crest, and contributes to the great vessels and outflow tract endocardial cushions, but the neural crest contribution to structures within the heart remains largely controversial. Here we demonstrate that neural crest cells from the preotic region migrate into the heart and differentiate into coronary artery smooth muscle cells. Preotic neural crest cells preferentially distribute to the conotruncal region and interventricular septum. Ablation of the preotic neural crest causes abnormalities in coronary septal branch and orifice formation. Mice and chicks lacking endothelin signalling show similar abnormalities in the coronary artery, indicating its involvement in neural crest-dependent coronary artery formation. This is the first report that reveals the preotic neural crest contribution to heart development and smooth muscle heterogeneity within a coronary artery.


Asunto(s)
Vasos Coronarios/embriología , Endotelinas/fisiología , Músculo Liso Vascular/embriología , Cresta Neural/embriología , Transducción de Señal/fisiología , Animales , Embrión de Pollo , Vasos Coronarios/crecimiento & desarrollo , Vasos Coronarios/fisiología , Coturnix/embriología , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos ICR , Ratones Noqueados , Músculo Liso Vascular/crecimiento & desarrollo , Músculo Liso Vascular/fisiología , Cresta Neural/citología , Cresta Neural/fisiología
10.
Development ; 138(21): 4763-76, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21965612

RESUMEN

Angiogenesis is a complex process, which is accomplished by reiteration of modules such as sprouting, elongation and bifurcation, that configures branching vascular networks. However, details of the individual and collective behaviors of vascular endothelial cells (ECs) during angiogenic morphogenesis remain largely unknown. Herein, we established a time-lapse imaging and computer-assisted analysis system that quantitatively characterizes behaviors in sprouting angiogenesis. Surprisingly, ECs moved backwards and forwards, overtaking each other even at the tip, showing an unknown mode of collective cell movement with dynamic 'cell-mixing'. Mosaic analysis, which enabled us to monitor the behavior of individual cells in a multicellular structure, confirmed the 'cell-mixing' phenomenon of ECs that occurs at the whole-cell level. Furthermore, an in vivo EC-tracking analysis revealed evidence of cell-mixing and overtaking at the tip in developing murine retinal vessels. In parametrical analysis, VEGF enhanced tip cell behavior and directed EC migration at the stalk during branch elongation. These movements were counter-regulated by EC-EC interplay via γ-secretase-dependent Dll4-Notch signaling, and might be promoted by EC-mural cell interplay. Finally, multiple regression analysis showed that these molecule-mediated tip cell behaviors and directed EC migration contributed to effective branch elongation. Taken together, our findings provide new insights into the individual and collective EC movements driving angiogenic morphogenesis. The methodology used for this analysis might serve to bridge the gap in our understanding between individual cell behavior and branching morphogenesis.


Asunto(s)
Movimiento Celular/fisiología , Células Endoteliales/fisiología , Morfogénesis/fisiología , Neovascularización Fisiológica/fisiología , Proteínas Adaptadoras Transductoras de Señales , Animales , Aorta/citología , Proteínas de Unión al Calcio , Proliferación Celular , Células Cultivadas , Células Endoteliales/citología , Procesamiento de Imagen Asistido por Computador , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Receptores Notch/genética , Receptores Notch/metabolismo , Vasos Retinianos/citología , Vasos Retinianos/fisiología , Transducción de Señal/fisiología , Imagen de Lapso de Tiempo
11.
Gene Expr Patterns ; 11(7): 371-7, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21565284

RESUMEN

The endothelin (Edn) system plays pleiotropic roles in renal function and various disease processes through two distinct G protein-coupled receptors, Edn receptors type-A (Ednra) and type-B (Ednrb). However, difficulties in the accurate identification of receptor-expressing cells in situ have made it difficult to dissect their diverse action in renal (patho)physiology. We have recently established mouse lines in which lacZ and EGFP are 'knocked-in' to the Ednra locus to faithfully mark Ednra-expressing cells. Here we analyzed these mice for their expression in the kidney to characterize Ednra-expressing cells. Ednra expression was first observed in undifferentiated mesenchymal cells around the ureteric bud at E12.5. Thereafter, Ednra expression was widely observed in vascular smooth muscle cells, JG cells and mesenchymal cells in the interstitium. After growth, the expression became confined to vascular smooth muscle cells, pericytes and renin-producing JG cells. By contrast, most cells in the nephron and vascular endothelial cells did not express Ednra. These results indicate that Ednra expression may be linked with non-epithelial fate determination and differentiation of metanephric mesenchyme. Ednra-lacZ/EGFP knock-in mice may serve as a useful tool in studies on renal function and pathophysiology of various renal diseases.


Asunto(s)
Riñón/citología , Riñón/metabolismo , Receptor de Endotelina A/genética , Animales , Diferenciación Celular , Regulación de la Expresión Génica , Técnicas de Sustitución del Gen , Proteínas Fluorescentes Verdes/genética , Mesodermo/citología , Mesodermo/metabolismo , Ratones , Ratones Transgénicos , Músculo Liso Vascular/citología , Músculo Liso Vascular/metabolismo , Nefronas/citología , Nefronas/metabolismo , Pericitos/citología , Pericitos/metabolismo
12.
J Cell Sci ; 124(Pt 8): 1214-23, 2011 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-21406564

RESUMEN

Crosstalk between microtubules and actin filaments is crucial for various cellular functions, including cell migration, spreading and cytokinesis. The Rac1 GTPase plays a key role in such crosstalk at the leading edge of migrating cells in order to promote lamellipodial formation. However, the mechanism underlying the link between microtubules and Rac1 activation remains unclear. Here, we show that calpain-6 (CAPN6), a non-proteolytic calpain with microtubule-binding and -stabilizing activity, might participate in this crosstalk. Small interfering RNA (siRNA)-induced knockdown of Capn6 in NIH 3T3 cells resulted in Rac1 activation, which promoted cell migration, spreading and lamellipodial protrusion. This increase in Rac1 activity was abolished by knockdown of the Rho guanine nucleotide exchange factor GEF-H1 (officially known as Arhgef2). CAPN6 and GEF-H1 colocalized with microtubules and also interacted with each other through specific domains. Upon knockdown of Capn6, GEF-H1 was shown to translocate from microtubules to the lamellipodial region and to interact with Rac1. By contrast, RhoA activity was decreased upon knockdown of Capn6, although low levels of active RhoA or the presence of RhoA molecules appeared to be required for the Capn6-knockdown-induced Rac1 activation. We suggest that CAPN6 acts as a potential regulator of Rac1 activity, through a mechanism involving interaction with GEF-H1, to control lamellipodial formation and cell motility.


Asunto(s)
Calpaína/metabolismo , Movimiento Celular , Factores de Intercambio de Guanina Nucleótido/metabolismo , Microtúbulos/química , Microtúbulos/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Proteína de Unión al GTP rac1/metabolismo , Animales , Calpaína/genética , Regulación de la Expresión Génica , Factores de Intercambio de Guanina Nucleótido/genética , Ratones , Células 3T3 NIH , Unión Proteica , Proteínas Proto-Oncogénicas/genética , Seudópodos/metabolismo , Factores de Intercambio de Guanina Nucleótido Rho , Proteína de Unión al GTP rac1/genética
13.
Development ; 137(22): 3823-33, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20929948

RESUMEN

The avian and mammalian heart originates from two distinct embryonic regions: an early differentiating first heart field and a dorsomedially located second heart field. It remains largely unknown when and how these subdivisions of the heart field divide into regions with different fates. Here, we identify in the mouse a subpopulation of the first (crescent-forming) field marked by endothelin receptor type A (Ednra) gene expression, which contributes to chamber myocardium through a unique type of cell behavior. Ednra-lacZ/EGFP-expressing cells arise in the ventrocaudal inflow region of the early linear heart tube, converge to the midline, move anteriorly along the outer curvature and give rise to chamber myocardium mainly of the left ventricle and both atria. This movement was confirmed by fluorescent dye-labeling and transplantation experiments. The Ednra-lacZ/EGFP-expressing subpopulation is characterized by the presence of Tbx5-expressing cells. Ednra-null embryonic hearts often demonstrate hypoplasia of the ventricular wall, low mitotic activity and decreased Tbx5 expression with reciprocal expansion of Tbx2 expression. Conversely, endothelin 1 stimulates ERK phosphorylation and Tbx5 expression in the early embryonic heart. These results indicate that early Ednra expression defines a subdomain of the first heart field contributing to chamber formation, in which endothelin 1/Ednra signaling is involved. The present finding provides an insight into how subpopulations within the crescent-forming (first) heart field contribute to the coordination of heart morphogenesis through spatiotemporally defined cell movements.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Corazón/embriología , Miocardio/metabolismo , Organogénesis , Receptor de Endotelina A/metabolismo , Animales , Embrión de Mamíferos/metabolismo , Endotelinas/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Técnicas de Sustitución del Gen , Ventrículos Cardíacos/embriología , Ratones , Mitosis , Fosforilación , Receptor de Endotelina A/genética , Proteínas de Dominio T Box/metabolismo
14.
J Comp Neurol ; 518(23): 4702-22, 2010 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-20963824

RESUMEN

In this study, we established a novel enhanced green fluorescent protein (EGFP) reporter mouse line that enables the visualization of the placode-derived inner ear sensory cell lineage. EGFP was initially expressed in the otic placode and throughout its differentiation process into the inner ear sensory patches. At embryonic day 10.5 (E10.5), EGFP was expressed in the ventral and dorsomedial region of the otocyst. These regions could mainly give rise to the cochlea, including the organ of Corti, and the saccule, including the macula and the endolymphatic duct. The region could also give rise to cells that will develop as either prosensory cells or statoacoustic ganglion neuroblasts. By using this line and fluorescence-activated cell sorting (FACS)-array technology, we developed a new gene expression profile of the regional specificity of the otocyst. EGFP-positive regions include the Otx1-positive region, which could be clearly distinguished from EGFP-negative regions. The signal log ratio of microarray data showed high efficiency in predicting the genes expressed mainly in the ventral and/or dorsomedial otocyst and the data could be mined to uncover many novel genes involved in inner ear morphogenesis and cell fate regulation. Additionally, these data suggest that some novel genes enriched in EGFP-positive regions may be potentially involved in human congenital sensorineural hearing loss. This reporter line could play important roles in the use of animal models for detailed analysis of the differentiation process into the sensory patches and the identification of regional-specific gene networks and novel gene functions in the developing inner ear.


Asunto(s)
Linaje de la Célula/genética , Oído Interno/embriología , Genes Reporteros/genética , Proteínas Fluorescentes Verdes/genética , Células Ciliadas Auditivas/metabolismo , Células Ciliadas Vestibulares/metabolismo , Receptor de Endotelina A/genética , Células Receptoras Sensoriales/metabolismo , Animales , Oído Interno/citología , Citometría de Flujo/métodos , Colorantes Fluorescentes/metabolismo , Proteínas Fluorescentes Verdes/biosíntesis , Células Ciliadas Auditivas/citología , Células Ciliadas Vestibulares/citología , Ratones , Ratones Transgénicos , Receptor de Endotelina A/biosíntesis , Células Receptoras Sensoriales/citología
15.
J Clin Invest ; 120(8): 2817-28, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20644252

RESUMEN

Sirtuins are a phylogenetically conserved NAD+-dependent protein deacetylase/ADP-ribosyltransferase family implicated in diverse biological processes. Several family members localize to mitochondria, the function of which is thought to determine the developmental potential of preimplantation embryos. We have therefore characterized the role of sirtuins in mouse preimplantation development under in vitro culture conditions. All sirtuin members were expressed in eggs, and their expression gradually decreased until the blastocyst stage. Treatment with sirtuin inhibitors resulted in increased intracellular ROS levels and decreased blastocyst formation. These effects were recapitulated by siRNA-induced knockdown of Sirt3, which is involved in mitochondrial energy metabolism, and in Sirt3-/- embryos. The antioxidant N-acetyl-L-cysteine and low-oxygen conditions rescued these adverse effects. When Sirt3-knockdown embryos were transferred to pseudopregnant mice after long-term culture, implantation and fetal growth rates were decreased, indicating that Sirt3-knockdown embryos were sensitive to in vitro conditions and that the effect was long lasting. Further experiments revealed that maternally derived Sirt3 was critical. Sirt3 inactivation increased mitochondrial ROS production, leading to p53 upregulation and changes in downstream gene expression. The inactivation of p53 improved the developmental outcome of Sirt3-knockdown embryos, indicating that the ROS-p53 pathway was responsible for the developmental defects. These results indicate that Sirt3 plays a protective role in preimplantation embryos against stress conditions during in vitro fertilization and culture.


Asunto(s)
Blastocisto/fisiología , Desarrollo Embrionario , Fertilización In Vitro , Estrés Oxidativo , Sirtuina 3/fisiología , Proteína p53 Supresora de Tumor/fisiología , Animales , Femenino , Ratones , Ratones Endogámicos ICR , Mitocondrias/metabolismo , Células 3T3 NIH , Interferencia de ARN , Especies Reactivas de Oxígeno/metabolismo , Sirtuina 3/antagonistas & inhibidores , Sirtuina 3/genética
16.
Proc Natl Acad Sci U S A ; 105(48): 18806-11, 2008 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-19017795

RESUMEN

Articulated jaws are highly conserved structures characteristic of gnathostome evolution. Epithelial-mesenchymal interactions within the first pharyngeal arch (PA1) instruct cephalic neural crest cells (CNCCs) to form the different skeletal elements of the jaws. The endothelin-1 (Edn1)/endothelin receptor type-A (Ednra)-->Dlx5/6-->Hand2 signaling pathway is necessary for lower jaw formation. Here, we show that the Edn1 signaling is sufficient for the conversion of the maxillary arch to mandibular identity. Constitutive activation of Ednra induced the transformation of upper jaw, maxillary, structures into lower jaw, mandibular, structures with duplicated Meckel's cartilage and dermatocranial jaws constituted by 4 dentary bones. Misexpression of Hand2 in the Ednra domain caused a similar transformation. Skeletal transformations are accompanied by neuromuscular remodeling. Ednra is expressed by most CNCCs, but its constitutive activation affects predominantly PA1. We conclude that after migration CNCCs are not all equivalent, suggesting that their specification occurs in sequential steps. Also, we show that, within PA1, CNCCs are competent to form both mandibular and maxillary structures and that an Edn1 switch is responsible for the choice of either morphogenetic program.


Asunto(s)
Endotelina-1/metabolismo , Mandíbula/embriología , Maxilar/embriología , Receptor de Endotelina A/metabolismo , Transducción de Señal/fisiología , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Tipificación del Cuerpo , Endotelina-1/genética , Regulación del Desarrollo de la Expresión Génica , Mandíbula/anatomía & histología , Mandíbula/metabolismo , Maxilar/anatomía & histología , Maxilar/metabolismo , Ratones , Ratones Transgénicos , Receptor de Endotelina A/genética
17.
J Biol Chem ; 283(49): 33902-10, 2008 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-18801732

RESUMEN

AMP-activated protein kinase (AMPK) activation reportedly suppresses transcriptional activity of the cAMP-responsive element (CRE) in the phosphoenolpyruvate carboxykinase C (PEPCK-C) promoter and reduces hepatic PEPCK-C expression. Although a previous study found TORC2 phosphorylation to be involved in the suppression of AMPK-mediated CRE transcriptional activity, we herein present evidence that glycogen synthase kinase 3beta (GSK3beta) phosphorylation induced by AMPK also plays an important role. We initially found that injecting fasted mice with 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR) markedly increased Ser-9 phosphorylation of hepatic GSK3beta within 15 min. Stimulation with AICAR or the GSK3beta inhibitor SB-415286 strongly inhibited CRE-containing promoter activity in HepG2 cells. Using the Gal4-based transactivation assay system, the transcriptional activity of cAMP-response element-binding protein (CREB) was suppressed by both AICAR and SB415286, whereas that of TORC2 was repressed significantly by AICAR but very slightly by SB415286. These results show inactivation of GSK3beta to directly inhibit CREB but not TORC2. Importantly, the AICAR-induced suppression of PEPCK-C expression was shown to be blunted by overexpression of GSK3beta(S9G) but not wild-type GSK3beta. In addition, AICAR stimulation decreased, whereas Compound C (AMPK inhibitor) increased CREB phosphorylation (Ser-129) in HepG2 cells. The time-courses of decreased CREB phosphorylation (Ser-129) and increased GSK3beta phosphorylation were very similar. Furthermore, AMPK-mediated GSK3beta phosphorylation was inhibited by an Akt-specific inhibitor in HepG2 cells, suggesting involvement of the Akt pathway. In summary, phosphorylation (Ser-9) of GSK3beta is very likely to be critical for AMPK-mediated PEPCK-C gene suppression. Reduced CREB phosphorylation (Ser-129) associated with inactivation of GSK3beta by Ser-9 phosphorylation may be the major mechanism underlying PEPCK-C gene suppression by AMPK-activating agents such as biguanide.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Regulación Enzimológica de la Expresión Génica , Glucógeno Sintasa Quinasa 3/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Hígado/enzimología , Fosfoenolpiruvato Carboxiquinasa (GTP)/metabolismo , Transcripción Genética , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/metabolismo , Animales , Biguanidas/farmacología , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/química , Activación Enzimática , Gluconeogénesis , Glucógeno Sintasa Quinasa 3 beta , Humanos , Ratones , Fosforilación , Ribonucleótidos/metabolismo
18.
Am J Physiol Endocrinol Metab ; 294(4): E719-25, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18270303

RESUMEN

Several serine/threonine kinases reportedly phosphorylate serine residues of IRS-1 and thereby induce insulin resistance. In this study, to investigate the effect of mTOR/raptor on insulin signaling and metabolism in K/KAy mice with genetic obesity-associated insulin resistance, a dominant negative raptor, COOH-terminally deleted raptor (raptor-DeltaC(T)), was overexpressed in the liver via injection of its adenovirus into the circulation. Hepatic raptor-DeltaC(T) expression levels were 1.5- to 4-fold that of endogenously expressed raptor. Glucose tolerance in raptor-DeltaC(T)-overexpressing mice improved significantly compared with that of LacZ-overexpressing mice. Insulin-induced activation of p70S6 kinase (p70(S6k)) was significantly suppressed in the livers of raptor-DeltaC(T) overexpressing mice. In addition, insulin-induced IRS-1, Ser(307), and Ser(636/639) phosphorylations were significantly suppressed in the raptor-DeltaC(T)-overexpressing liver, whereas tyrosine phosphorylation of IRS-1 was increased. PI 3-kinase activation in response to insulin stimulation was increased approximately twofold, and Akt phosphorylation was clearly enhanced under both basal and insulin-stimulated conditions in the livers of raptor-DeltaC(T) mice. Thus, our data indicate that suppression of the mTOR/p70(S6k) pathway leads to improved glucose tolerance in K/KAy mice. These observations may contribute to the development of novel antidiabetic agents.


Asunto(s)
Intolerancia a la Glucosa/metabolismo , Resistencia a la Insulina/fisiología , Insulina/metabolismo , Hígado/fisiología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Adenoviridae/genética , Animales , Línea Celular , Técnicas de Transferencia de Gen , Intolerancia a la Glucosa/fisiopatología , Humanos , Proteínas Sustrato del Receptor de Insulina , Riñón/citología , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones , Ratones Mutantes , Complejos Multiproteicos , Obesidad/metabolismo , Obesidad/fisiopatología , Fosforilación , Proteínas , Proteínas Quinasas S6 Ribosómicas 70-kDa/metabolismo , Serina-Treonina Quinasas TOR
19.
Development ; 135(4): 755-65, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18199583

RESUMEN

The endothelin (Edn) system comprises three ligands (Edn1, Edn2 and Edn3) and their G-protein-coupled type A (Ednra) and type B (Ednrb) receptors. During embryogenesis, the Edn1/Ednra signaling is thought to regulate the dorsoventral axis patterning of pharyngeal arches via Dlx5/Dlx6 upregulation. To further clarify the underlying mechanism, we have established mice in which gene cassettes can be efficiently knocked-in into the Ednra locus using recombinase-mediated cassette exchange (RMCE) based on the Cre-lox system. The first homologous recombination introducing mutant lox-flanked Neo resulted in homeotic transformation of the lower jaw to an upper jaw, as expected. Subsequent RMCE-mediated knock-in of lacZ targeted its expression to the cranial/cardiac neural crest derivatives as well as in mesoderm-derived head mesenchyme. Knock-in of Ednra cDNA resulted in a complete rescue of craniofacial defects of Ednra-null mutants. By contrast, Ednrb cDNA could not rescue them except for the most distal pharyngeal structures. At early stages, the expression of Dlx5, Dlx6 and their downstream genes was downregulated and apoptotic cells distributed distally in the mandible of Ednrb-knock-in embryos. These results, together with similarity in craniofacial defects between Ednrb-knock-in mice and neural-crest-specific Galpha(q)/Galpha(11)-deficient mice, indicate that the dorsoventral axis patterning of pharyngeal arches is regulated by the Ednra-selective, G(q)/G(11)-dependent signaling, while the formation of the distal pharyngeal region is under the control of a G(q)/G(11)-independent signaling, which can be substituted by Ednrb. This RMCE-mediated knock-in system can serve as a useful tool for studies on gene functions in craniofacial development.


Asunto(s)
Región Branquial/embriología , Endotelina-1/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/metabolismo , Mutagénesis Insercional , Receptor de Endotelina A/metabolismo , Recombinasas/metabolismo , Transducción de Señal , Animales , Región Branquial/metabolismo , Anomalías Craneofaciales , ADN Complementario , Embrión de Mamíferos/anomalías , Embrión de Mamíferos/enzimología , Desarrollo Embrionario , Regulación del Desarrollo de la Expresión Génica , Mesodermo/embriología , Mesodermo/enzimología , Ratones , Ratones Endogámicos C57BL , Modelos Biológicos , Músculo Esquelético/anomalías , Cresta Neural/embriología , Cresta Neural/enzimología , Fenotipo , Receptor de Endotelina A/deficiencia , Receptor de Endotelina A/genética , Receptor de Endotelina B/metabolismo , beta-Galactosidasa/metabolismo
20.
Am J Physiol Renal Physiol ; 294(3): F542-53, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18172001

RESUMEN

TAZ (transcriptional coactivator with PDZ-binding motif), also called WWTR1 (WW domain containing transcription regulator 1), is a 14-3-3-binding molecule homologous to Yes-associated protein. TAZ acts as a coactivator for several transcription factors as well as a modulator of membrane-associated PDZ domain-containing proteins, but its (patho)physiological roles remain unknown. Here we show that gene inactivation of TAZ in mice resulted in pathological changes in the kidney and lung that resemble the common human diseases polycystic kidney disease and pulmonary emphysema. Taz-null/lacZ knockin mutant homozygotes demonstrated renal cyst formation as early as embryonic day 15.5 with dilatation of Bowman's capsules and proximal tubules, followed by pelvic dilatation and hydronephrosis. After birth, only one-fifth of TAZ-deficient homozygotes grew to adulthood and demonstrated multicystic kidneys with severe urinary concentrating defects and polyuria. Furthermore, adult TAZ-deficient homozygotes exhibited diffuse emphysematous changes in the lung. Thus TAZ is essential for developmental mechanisms involved in kidney and lung organogenesis, whose disturbance may lead to the pathogenesis of common human diseases.


Asunto(s)
Proteínas 14-3-3/deficiencia , Modelos Animales de Enfermedad , Ratones Transgénicos/metabolismo , Enfermedades Renales Poliquísticas/metabolismo , Enfisema Pulmonar/metabolismo , Proteínas 14-3-3/genética , Proteínas Adaptadoras Transductoras de Señales , Animales , Femenino , Humanos , Riñón/anomalías , Riñón/metabolismo , Riñón/patología , Pulmón/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos ICR , Fenotipo , Enfermedades Renales Poliquísticas/genética , Enfermedades Renales Poliquísticas/patología , Poliuria/genética , Poliuria/metabolismo , Enfisema Pulmonar/genética , Enfisema Pulmonar/patología , Transactivadores , Agua/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA