Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Yakugaku Zasshi ; 144(1): 47-50, 2024.
Artículo en Japonés | MEDLINE | ID: mdl-38171794

RESUMEN

Environmental electrophiles modify thiol groups of proteins in organs, disrupting cellular functions carried out by the modified proteins and increasing the risk of various diseases. The transcription factor NF-E2-related factor 2 (Nrf2) plays a crucial role in detoxifying electrophiles by forming glutathione adducts and subsequently excreting them into extracellular spaces. Supersulfides such as cysteine persulfides (CysSSH) produced by cystathionine γ-lyase (CSE) capture environmental electrophiles through sulfur adduct formation. However, the Nrf2 and CSE contributions to blocking environmental electrophile-mediated toxicity have yet to be evaluated. Therefore, we assessed the individual and combined roles of Nrf2 and CSE in suppressing toxicity induced by environmental electrophiles using Nrf2 knockout (KO), CSE KO, and Nrf2/CSE double KO (DKO) mice. Our findings indicate that CSE/Nrf2 DKO mice are more sensitive to environmental electrophiles compared to their single KO counterparts, highlighting the distinct mechanisms through which both pathways mitigate the toxic effects of reactive electrophiles. Moreover, diverse metabolites produced by symbiotic gut bacteria in the human body are known to exert various effects on host organ functions beyond the intestinal tract. We observed reduced blood supersulfide levels in mice lacking gut microflora compared to normal mice. Furthermore, we identified intestinal bacteria belonging to the families Ruminococcaceae and Lachnospiraceae as high CysSSH-producing bacteria. This suggests that the gut microbiota serves as a source of in vivo supersulfide molecules. These findings suggest that supersulfide derived from gut bacteria may act protectively against environmental electrophilic exposure in the host.


Asunto(s)
Cistationina gamma-Liasa , Factor 2 Relacionado con NF-E2 , Humanos , Ratones , Animales , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Cistationina gamma-Liasa/genética , Cistationina gamma-Liasa/metabolismo , Cistationina gamma-Liasa/farmacología , Glutatión/metabolismo , Compuestos de Sulfhidrilo/metabolismo , Estrés Oxidativo
2.
Nat Commun ; 14(1): 8469, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38123556

RESUMEN

Effective early-stage markers for predicting which patients are at risk of developing SARS-CoV-2 infection have not been fully investigated. Here, we performed comprehensive serum metabolome analysis of a total of 83 patients from two cohorts to determine that the acceleration of amino acid catabolism within 5 days from disease onset correlated with future disease severity. Increased levels of de-aminated amino acid catabolites involved in the de novo nucleotide synthesis pathway were identified as early prognostic markers that correlated with the initial viral load. We further employed mice models of SARS-CoV2-MA10 and influenza infection to demonstrate that such de-amination of amino acids and de novo synthesis of nucleotides were associated with the abnormal proliferation of airway and vascular tissue cells in the lungs during the early stages of infection. Consequently, it can be concluded that lung parenchymal tissue remodeling in the early stages of respiratory viral infections induces systemic metabolic remodeling and that the associated key amino acid catabolites are valid predictors for excessive inflammatory response in later disease stages.


Asunto(s)
COVID-19 , Neumonía , Humanos , Animales , Ratones , SARS-CoV-2 , ARN Viral , Aminoácidos
3.
iScience ; 25(8): 104838, 2022 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-35996581

RESUMEN

D-Amino acids (D-AAs) have various functions in mammals and microbes. D-AAs are produced by gut microbiota and can act as potent bactericidal molecules. Thus, D-AAs regulate the ecological niche of the intestine; however, the actual impacts of D-AAs in the gut remain unknown. In this study, we show that D-Tryptophan (D-Trp) inhibits the growth of enteric pathogen and colitogenic pathobionts. The growth of Citrobacter rodentium in vitro is strongly inhibited by D-Trp treatment. Moreover, D-Trp protects mice from lethal C. rodentium infection via reduction of the pathogen. Additionally, D-Trp prevents the development of experimental colitis by the depletion of specific microbes in the intestine. D-Trp increases the intracellular level of indole acrylic acid (IA), a key molecule that determines the susceptibility of enteric microbes to D-Trp. Treatment with IA improves the survival of mice infected with C. rodentium. Hence, D-Trp could act as a gut environmental modulator that regulates intestinal homeostasis.

4.
Cell Rep ; 40(3): 111087, 2022 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-35858544

RESUMEN

Microbiota-accessible carbohydrates (MACs) exert health-promoting effects, but how each MAC impacts gut microbiota and regulates host physiology remains unclear. Here, we show that l-arabinose and sucrose cooperatively act on gut microbiota and exert anti-obesogenic effects. Specifically, l-arabinose, a monosaccharide that is poorly absorbed in the gut and inhibits intestinal sucrase, suppresses diet-induced obesity in mice in the presence of sucrose. Additionally, the suppressive effect of l-arabinose on adiposity is abrogated in mice lacking the short-chain fatty acid (SCFA) receptors GPR43 and GPR41. Mechanistically, l-arabinose increases the relative abundance of acetate and propionate producers (e.g., Bacteroides), while sucrose enhances SCFA production. Furthermore, l-arabinose and sucrose activate the glycolytic and pentose phosphate pathways of Bacteroides, respectively, indicating that they synergistically promote acetate production through distinct pathways. These findings suggest that each MAC has a unique property and thus may serve as a precision gut-microbiota modulator to promote host homeostasis.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Animales , Arabinosa/farmacología , Bacteroides/metabolismo , Carbohidratos , Ácidos Grasos Volátiles/metabolismo , Ratones , Obesidad/metabolismo , Sacarosa
5.
Cell Rep ; 38(10): 110479, 2022 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-35263581

RESUMEN

Gut microbiota act beyond the gastrointestinal tract to regulate the physiology of the host. However, their contribution to the antioxidant capacity of the host remains largely understudied. In this study, we observe that gut bacteria increase the steady-state plasma levels of high-antioxidant molecules, reactive sulfur species (RSS), such as hydrogen sulfide and cysteine persulfide (CysSSH), in the host. Moreover, gut bacteria utilize cystine as a substrate to enzymatically produce CysSSH. Administration of cystine to mice increases their plasma levels of RSS and suppresses the concanavalin-A-induced oxidative stress and liver damage in a gut-microbiota-dependent manner. We find that gut bacteria belonging to the Lachnospiraceae and Ruminococcaceae families have a high capacity to produce RSS, requiring pyridoxal 5'-phosphate for their enzymatic reactions. Collectively, our data demonstrate that gut microbiota enhance the antioxidant capacity of the host through the generation of RSS.


Asunto(s)
Microbioma Gastrointestinal , Sulfuro de Hidrógeno , Animales , Antioxidantes , Bacterias , Cistina , Humanos , Ratones , Azufre
6.
Pharmaceutics ; 13(2)2021 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-33530627

RESUMEN

Vaccinations improve the mortality and morbidity rates associated with several infections through the generation of antigen-specific immune responses. Adjuvants are often used together with vaccines to improve immunogenicity. However, the immune responses induced by most on-going vaccines and adjuvants approved for human use vary in individuals; this is a limitation that must be overcome to improve vaccine efficacy. Several reports have indicated that the symbiotic bacteria, particularly the gut microbiota, impact vaccine-mediated antigen-specific immune responses and promote the induction of nonspecific responses via the "training" of innate immune cells. Therefore, the interaction between gut microbiota and innate immune cells should be considered to ensure the optimal immunogenicity of vaccines and adjuvants. In this review, we first introduce the current knowledge on the immunological mechanisms of vaccines and adjuvants. Subsequently, we discuss how the gut microbiota influences immunity and highlight the relationship between gut microbes and trained innate immunity, vaccines, and adjuvants. Understanding these complex interactions will provide insights into novel vaccine approaches centered on the gut microbiota.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...