Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Mol Syndromol ; 15(3): 251-256, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38841330

RESUMEN

Introduction: The Witteveen-Kolk syndrome (WITKOS) (OMIM: 613406) is a heterogeneous emerging disorder caused by pathogenic variants or microdeletions encompassing the SIN3A gene (SIN3 Transcription Regulator Family Member A). It is characterized by distinctive facial features, developmental delay, intellectual disability, microcephaly, short stature, and subtle anomalies on brain magnetic resonance imaging (MRI). To date, about 50 patients have been reported in the medical literature. Patient Presentation: In this article, we reported a patient with classic findings of WITKOS including global developmental delay, microcephaly, hypotonia, vomiting, malnutrition, autistic and dysmorphic facial features, and cardiac abnormalities. Also, a barium esophagogram suggested severe motility disorder and gastroesophageal reflux disease. Affymetrix CytoScan 750K microarray showed a de novo 1.6-Mb deletion at 15q24.1q24.2, including the whole SIN3A gene. We have also summarized the clinical features of WITKOS patients in the medical literature and cardiac abnormalities detected in 4 out of 10 patients in studies that clearly state that cardiac examination was performed in the patients. Conclusion: Our findings showed that cardiac defects are not uncommon findings in WITKOS. Physicians should also be aware of reflux disease and motility disorder in patients with feeding difficulty together with early cardiac examination in terms of an improved quality of life in WITKOS patients.

2.
Eur J Hum Genet ; 32(1): 52-60, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37880421

RESUMEN

Lissencephaly (LIS) is a malformation of cortical development due to deficient neuronal migration and abnormal formation of cerebral convolutions or gyri. Thirty-one LIS-associated genes have been previously described. Recently, biallelic pathogenic variants in CRADD and PIDD1, have associated with LIS impacting the previously established role of the PIDDosome in activating caspase-2. In this report, we describe biallelic truncating variants in CASP2, another subunit of PIDDosome complex. Seven patients from five independent families presenting with a neurodevelopmental phenotype were identified through GeneMatcher-facilitated international collaborations. Exome sequencing analysis was carried out and revealed two distinct novel homozygous (NM_032982.4:c.1156delT (p.Tyr386ThrfsTer25), and c.1174 C > T (p.Gln392Ter)) and compound heterozygous variants (c.[130 C > T];[876 + 1 G > T] p.[Arg44Ter];[?]) in CASP2 segregating within the families in a manner compatible with an autosomal recessive pattern. RNA studies of the c.876 + 1 G > T variant indicated usage of two cryptic splice donor sites, each introducing a premature stop codon. All patients from whom brain MRIs were available had a typical fronto-temporal LIS and pachygyria, remarkably resembling the CRADD and PIDD1-related neuroimaging findings. Other findings included developmental delay, attention deficit hyperactivity disorder, hypotonia, seizure, poor social skills, and autistic traits. In summary, we present patients with CASP2-related ID, anterior-predominant LIS, and pachygyria similar to previously reported patients with CRADD and PIDD1-related disorders, expanding the genetic spectrum of LIS and lending support that each component of the PIDDosome complex is critical for normal development of the human cerebral cortex and brain function.


Asunto(s)
Lisencefalia , Trastornos del Neurodesarrollo , Humanos , Caspasa 2/genética , Lisencefalia/diagnóstico por imagen , Lisencefalia/genética , Alelos , Trastornos del Neurodesarrollo/genética , Codón sin Sentido , Fenotipo , Cisteína Endopeptidasas/genética
3.
Mol Syndromol ; 14(6): 485-492, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38058760

RESUMEN

Introduction: Hereditary forms of intellectual disability (ID), an estimated prevalence ranging between 1% and 3% in the general population, are among the most important problems in health care. Especially, autosomal-recessive ID has a very heterogeneous molecular basis and a lack of specific phenotypic features. Methods: Here, we report on two unrelated patients with autosomal-recessive ID, microcephaly, and autistic features and review the patients with TRAPPC9-related ID. Whole-exome sequencing and array CGH were performed for molecular diagnosis of the patients. Results: The first case has a microdeletion on chromosome 8q24.23-q24.3 region which is 1.7 Mb in length and includes the last 5 exons of TRAPPC9, and c.3435delG [p.Thr1146Profs*8] deletion. The second case has a homozygous missense c.623A>C (p.His208Pro) variant in TRAPPC9 which is detected by means of whole-exome sequencing study of the proband. We also reviewed the clinical findings and mutation spectrum of all patients with TRAPPC9-related ID reported so far. Conclusions: Our study showed that the most consistent clinical findings for TRAPPC9-related ID are ID, microcephaly, and some structural brain MRI abnormalities. The mutations in the TRAPPC9 are scattered throughout all exons of TRAPPC9 indicating there is no hot spot mutation region in this gene.

5.
Intractable Rare Dis Res ; 11(4): 219-221, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36457583

RESUMEN

Potassium voltage-gated channel subfamily B member 1 (KCNB1) encodes Kv2.1 potassium channel. KCNB1 mutations are known to cause global developmental delay, behavioral disorders, and various epilepsies. Most variants occur de novo and are rarely inherited. Here, we report a 14-year-old male patient who was admitted to our clinic with seizures, developmental delay history, and intellectual disability. Brain magnetic resonance image (MRI) was normal and electroencephalogram (EEG) showed spike and sharp-wave complexes emerging in the left hemisphere parietooccipital areas, which were paroxysmally generalized. We performed whole exome sequence analysis (WES) and identified a heterozygous frameshift mutation c.522delA in exon 1 of KCNB1 (NM_004975.4) predicting a premature stop codon p.Lys174Asnfs*20 in the proband. Sanger sequencing confirmed the heterozygous c.522delA mutation in the proband and his mother who also had epilepsy and learning difficulties. His 45 year old mother had used antiepileptic drugs for 9 years after a seizure episode at 12 years old. Also, his mother's uncle's son is nonverbal and has developmental delay and epilepsy. Our study shows that frameshift mutation cytoplasmic domain of KCNB1 gene can cause intrafamilial phenotypic variability and relatively mild clinical findings in these patients.

6.
Biomed Pharmacother ; 139: 111633, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34243624

RESUMEN

Idiopathic pulmonary fibrosis (IPF) is the most common and most deadly form of interstitial lung disease. Osteopontin (OPN), a matricellular protein with proinflammatory and profibrotic properties, plays a major role in several fibrotic diseases, including IPF; OPN is highly upregulated in patients' lung samples. In this study, we knocked down OPN in a bleomycin (BLM)-induced pulmonary fibrosis (PF) mouse model using small interfering RNA (siRNA) to determine whether the use of OPN siRNA is an effective therapeutic strategy for IPF. We found that fibrosing areas were significantly smaller in specimens from OPN siRNA-treated mice. The number of alveolar macrophages, neutrophils, and lymphocytes in bronchoalveolar lavage fluid was also reduced in OPN siRNA-treated mice. Regarding the expression of epithelial-mesenchymal transition (EMT)-related proteins, the administration of OPN-siRNA to BLM-treated mice upregulated E-cadherin expression and downregulated vimentin expression. Moreover, in vitro, we incubated the human alveolar adenocarcinoma cell line A549 with transforming growth factor (TGF)-ß1 and subsequently transfected the cells with OPN siRNA. We found a significant upregulation of Col1A1, fibronectin, and vimentin after TGF-ß1 stimulation in A549 cells. In contrast, a downregulation of Col1A1, fibronectin, and vimentin mRNA levels was observed in TGF-ß1-stimulated OPN knockdown A549 cells. Therefore, the downregulation of OPN effectively reduced pulmonary fibrotic and EMT changes both in vitro and in vivo. Altogether, our results indicate that OPN siRNA exerts a protective effect on BLM-induced PF in mice. Our results provide a basis for the development of novel targeted therapeutic strategies for IPF.


Asunto(s)
Bleomicina/farmacología , Transición Epitelial-Mesenquimal/genética , Fibrosis Pulmonar Idiopática/inducido químicamente , Fibrosis Pulmonar Idiopática/genética , Osteopontina/genética , Células A549 , Animales , Líquido del Lavado Bronquioalveolar , Línea Celular Tumoral , Regulación hacia Abajo/genética , Transición Epitelial-Mesenquimal/efectos de los fármacos , Humanos , Pulmón/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , ARN Interferente Pequeño/genética , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Factor de Crecimiento Transformador beta1/genética , Regulación hacia Arriba/genética
7.
Intractable Rare Dis Res ; 6(1): 61-64, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28357185

RESUMEN

Reported here are twins, both of whom have a 1q21.3 microdeletion and who exhibit key features common to previously reported cases such as microcephaly and developmental delay. However, some clinical findings and deleted genes differed from those in previously reported cases. The karyotype was normal 46, XX for both of the twins. Array comparative genomic hybridization (CGH) identified a 2.6 Mb deletion on chromosome 1q21.3 (chr1: 153,514,121-156,171,335 bp) in case 1 and a 1.6 Mb deletion on chromosome 1q21.3 (chr1: 154,748,365-156,358,923 bp) in case 2. The deleted region includes DPM3, MUC1, GBA, PKLR, RIT1, and LAMTOR2 in both siblings. To the extent known, this is the second report of a 1q21.3 microdeletion in a family with mental retardation, developmental delay, seizures, and some dysmorphic features, thus expanding the phenotypic spectrum.

8.
Intractable Rare Dis Res ; 5(3): 222-6, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27672547

RESUMEN

Coffin-Siris syndrome (CSS) (MIM 135900) is characterized by developmental delay, severe speech impairment, distinctive facial features, hypertrichosis, aplasia or hypoplasia of the distal phalanx or nail of the fifth digit and agenesis of the corpus callosum. Recently, it was shown that mutations in the ARID1B gene are the main cause of CSS, accounting for 76% of identified mutations. Here, we report a 15 year-old female patient who was admitted to our clinic with seizures, speech problems, dysmorphic features, bilaterally big, large thumb, café-au-lait (CAL) spots, obesity and hyperinsulinism. First, the patient was thought to have an association of neurofibromatosis and Rubinstein Taybi syndrome. Because of the large size of the NF1 gene for neurofibromatosis and CREBBP gene for Rubinstein Taybi syndrome, whole exome sequence analysis (WES) was conducted and a novel ARID1B mutation was identified. The proband WES test identified a novel heterozygous frameshift mutation c.3394_3395insTA in exon 13 of ARID1B (NM_017519.2) predicting a premature stop codon p.(Tyr1132Leufs*67). Sanger sequencing confirmed the heterozygous c.3394_3395insTA mutation in the proband and that it was not present in her parents indicating de novo mutation. Further investigation and new cases will help to understand this phenomenon better.

9.
Medicine (Baltimore) ; 94(16): e732, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25906101

RESUMEN

Chronic myeloproliferative disorders such as polycythemia vera (PV), essential thrombocytosis (ET), and idiopathic myelofibrosis arise from clonal proliferation of neoplastic stem cells in the bone marrow. Matrix metalloproteinases (MMPs) are a family of zinc-dependent endopeptidases that have potential to degrade all types of extracellular matrix (ECM) and also play a role in remodeling of the ECM. It is known that MMPs play a role in bone marrow remodeling.The primary goal of our study is to explore the relationship between chronic myeloproliferative diseases and some of MMP gene polymorphisms. The demonstration of a relationship will help to understand whether these polymorphisms may be a potential early diagnosis marker of the diseases.Patients were selected from outpatient clinics of Turgut Ozal University Hospital, Ankara, Turkey, between December 2010 and May 2011. Twenty-eight patients that previously diagnosed and followed-up with PV, 17 with secondary polycythemia (SP), and 12 with ET were enrolled in the study, along with a control group of 22 healthy people.DNA was isolated from peripheral blood. Using polymerase chain reaction-restriction fragment length polymorphism method, MMP2 and MMP9 gene polymorphisms were analyzed with agarose gel electrophoresis. There was a statistically significant difference between the study groups and the control group in terms of Gln279Arg polymorphisms rates of MMP9. The highest MMP9 Gln279Arg polymorphism rate was observed in the ET group. But nobody from the control group had polymorphic MMP9. There was no statistically significant difference between the groups in terms of MMP2-735 C > T polymorphism rates.In conclusion, MMP9 gene Gln279Arg polymorphism was associated with ET, SP, and PV diseases. Hence, we believe that these gene polymorphisms may play a role in the mechanism of bone marrow fibrosis and may be a factor that increases the risk of thrombosis. Illumination of the molecular basis of the relationship between MMP-thrombosis and MMP-fibrosis provides a better understanding of the pathophysiology of PV and ET diseases and will allow new approaches to diagnosis and treatment.


Asunto(s)
Metaloproteinasas de la Matriz/genética , Trastornos Mieloproliferativos/genética , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Masculino , Metaloproteinasa 2 de la Matriz/genética , Metaloproteinasa 9 de la Matriz/genética , Persona de Mediana Edad , Polimorfismo Genético , Turquía/epidemiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA