Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nano Lett ; 23(7): 2846-2853, 2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-36976857

RESUMEN

In a nanowire (NW) of a three-dimensional topological insulator (TI), the quantum confinement of topological surface states leads to a peculiar sub-band structure that is useful for generating Majorana bound states. Top-down fabrication of TINWs from a high-quality thin film would be a scalable technology with great design flexibility, but there has been no report on top-down-fabricated TINWs where the chemical potential can be tuned to the charge neutrality point (CNP). Here we present a top-down fabrication process for bulk-insulating TINWs etched from high-quality (Bi1-xSbx)2Te3 thin films without degradation. We show that the chemical potential can be gate-tuned to the CNP, and the resistance of the NW presents characteristic oscillations as functions of the gate voltage and the parallel magnetic field, manifesting the TI-sub-band physics. We further demonstrate the superconducting proximity effect in these TINWs, preparing the groundwork for future devices to investigate Majorana bound states.

2.
Nat Nanotechnol ; 17(7): 696-700, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35551241

RESUMEN

Wireless technology relies on the conversion of alternating electromagnetic fields into direct currents, a process known as rectification. Although rectifiers are normally based on semiconductor diodes, quantum mechanical non-reciprocal transport effects that enable a highly controllable rectification were recently discovered1-9. One such effect is magnetochiral anisotropy (MCA)6-9, in which the resistance of a material or a device depends on both the direction of the current flow and an applied magnetic field. However, the size of rectification possible due to MCA is usually extremely small because MCA relies on inversion symmetry breaking that leads to the manifestation of spin-orbit coupling, which is a relativistic effect6-8. In typical materials, the rectification coefficient γ due to MCA is usually ∣γ∣ ≲ 1 A-1 T-1 (refs. 8-12) and the maximum values reported so far are ∣γ∣ ≈ 100 A-1 T-1 in carbon nanotubes13 and ZrTe5 (ref. 14). Here, to overcome this limitation, we artificially break the inversion symmetry via an applied gate voltage in thin topological insulator (TI) nanowire heterostructures and theoretically predict that such a symmetry breaking can lead to a giant MCA effect. Our prediction is confirmed via experiments on thin bulk-insulating (Bi1-xSbx)2Te3 (BST) TI nanowires, in which we observe an MCA consistent with theory and ∣γ∣ ≈ 100,000 A-1 T-1, a very large MCA rectification coefficient in a normal conductor.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...