Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Mol Divers ; 2023 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-37902899

RESUMEN

The research aimed to establish a multidrug-resistant Klebsiella pneumoniae-induced genetic model for mastitis considering the alternative mechanisms of the DjlA-mediated CbpA protein regulation. The Whole Genome Sequencing of the newly isolated K. pneumoniae strain was conducted to annotate the frequently occurring antibiotic resistance and virulence factors following PCR and MALDI-TOF mass-spectrophotometry. Co-chaperon DjlA was identified and extracted via restriction digestion on PAGE. Based on the molecular string property analysis of different DnaJ and DnaK type genes, CbpA was identified to be regulated most by the DjlA protein during mastitis. Based on the quantum tunnel-cluster profiles, CbpA was modeled as a novel target for diversified biosynthetic, and chemosynthetic compounds. Pharmacokinetic and pharmacodynamic analyses were conducted to determine the maximal point-specificity of selective flavonoids in complexing with the CbpA macromolecule at molecular docking. The molecular dynamic simulation (100 ns) of each of the flavonoid-protein complexes was studied regarding the parameters RMSD, RMSF, Rg, SASA, MMGBSA, and intramolecular hydrogen bonds; where all of them resulted significantly. To ratify all the molecular dynamic simulation outputs, the potential stability of the flavonoids in complexing with CbpA can be remarked as Quercetin > Biochanin A > Kaempherol > Myricetin, which were all significant in comparison to the control Galangin. Finally, a comprehensive drug-gene interaction pathway for each of the flavonoids was developed to determine the simultaneous and quantitative-synergistic effects of different operons belonging to the DnaJ-type proteins on the metabolism of the tested pharmacophores in CbpA. Considering all the in vitro and in silico parameters, DjlA-mediated CbpA can be a novel target for the tested flavonoids as the potential therapeutics of mastitis as futuristic drugs.

2.
In Silico Pharmacol ; 11(1): 8, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36999133

RESUMEN

HCV is a hepatotropic RNA virus recognized for its frequent virulence and fatality worldwide. Despite many vaccine development programs underway, researchers are on a quest for natural bioactive compounds due to their multivalent efficiencies against viral infections, considering which the current research aimed to figure out the target-specificity and therapeutic potentiality of α, ß, and δ subunits of amyrin, as novel bioactive components against the HCV influx mechanism. Initially, the novelty of amyrin subunits was conducted from 203 pharmacophores, comparing their in-silico pharmacokinetic and pharmacodynamic profiles. Besides, the best active site of CD81 was determined following the quantum tunneling algorithm. The molecular dynamic simulation was conducted (100 ns) following the molecular docking steps to reveal the parameters- RMSD (Å); Cα; RMSF (Å); MolSA (Å2); Rg (nm); PSA (Å); SASA (Å2), and the MM-GBSA dG binding scores. Besides, molecular strings of CD81, along with the co-expressed genes, were classified, as responsible for encoding CD81-mediated protein clusters during HCV infection, resulting in the potentiality of amyrins as targeted prophylactics in HCV infection. Finally, in vivo profiling of the oxidative stress marker, liver-specific enzymes, and antioxidant markers was conducted in the DMN-induced mice model, where ß-amyrin scored the most significant values in all aspects.

3.
Mol Divers ; 27(6): 2651-2672, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36445532

RESUMEN

The HER2-positive patients occupy ~ 30% of the total breast cancer patients globally where no prevalent drugs are available to mitigate the frequent metastasis clinically except lapatinib and neratinib. This scarcity reinforced researchers' quest for new medications where natural substances are significantly considered. Valuing the aforementioned issues, this research aimed to study the ERBB2-mediated string networks that work behind the HER2-positive breast cancer formation regarding co-expression, gene regulation, GAMA-receptor-signaling pathway, cellular polarization, and signal inhibition. Following the overexpression, promotor methylation, and survivability profiles of ERBB2, the super docking position of HER2 was identified using the quantum tunneling algorithm. Supramolecular docking was conducted to study the target specificity of EPA and DHA fatty acids followed by a comprehensive molecular dynamic simulation (100 ns) to reveal the RMSD, RMSF, Rg, SASA, H-bonds, and MM/GBSA values. Finally, potential drug targets for EPA and DHA in breast cancer were constructed to determine the drug-protein interactions (DPI) at metabolic stages. Considering the values resulting from the combinational models of the oncoinformatic, pharmacodynamic, and metabolic parameters, long-chain omega-3 fatty acids like EPA and DHA can be considered as potential-targeted therapeutics for HER2-positive breast cancer treatment.


Asunto(s)
Neoplasias de la Mama , Ácidos Grasos Omega-3 , Humanos , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Detección Precoz del Cáncer , Ácidos Grasos Omega-3/farmacología , Ácidos Grasos Omega-3/uso terapéutico , Regulación de la Expresión Génica , Familia de Multigenes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...