Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Acta Pharm ; 74(3): 525-537, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39279522

RESUMEN

Polyurethane/hydroxyapatite (PU/HA) composites are well-known for various biomedical applications. This study reports a chemical approach to improve the interaction between HA and PU matrix. HA was surface-modified with 1,6-hexamethylene diisocyanate (HMDI). First, an isocyanate-modified HA (IHA) was synthesized by hydro-thermal method. Second, IHA was incorporated into a separately synthesized thermoplastic PU by a solvent casting technique. A series of PU/IHA composites was prepared by varying PU᾿s soft and hard segments. The IHA was added to PU (5 and 10 %). The FTIR spectra exhibited characteristic bands of urethane and HA, confirming the synthesis of the composites. XRD study showed the crystallite size of IHA (20 Å) with hexagonal geometry and an amorphous to semicrystalline nature of composites. SEM showed that composites displayed porous and granular morphology. The TGA thermograms of the composites revealed the thermal stability up to 400 °C. The IHA addition considerably improved hydrophilicity and degradation of the composites in simulated body fluid (SBF). MTT assay revealed improved cytocompatibility (> 80 %) of the composites. These results demonstrated an appreciable improvement in structure, morphology, hydrophilicity, degradation, and cytocompatibility of PU/IHA composites by chemical modification of HA. Hence, these composites possess remarkable potential for biomedical applications such as tissue regeneration.


Asunto(s)
Materiales Biocompatibles , Durapatita , Poliuretanos , Poliuretanos/química , Durapatita/química , Materiales Biocompatibles/química , Animales , Ratones , Ensayo de Materiales/métodos , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Propiedades de Superficie , Cianatos/química , Ingeniería de Tejidos/métodos , Supervivencia Celular/efectos de los fármacos , Porosidad , Difracción de Rayos X , Isocianatos/química , Interacciones Hidrofóbicas e Hidrofílicas
2.
Vaccines (Basel) ; 12(7)2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-39066358

RESUMEN

Over the years, research regarding the Zika virus has been steadily increasing. Early immunization for ZIKV is a priority for preventing complications such as microencephaly and Guillain-Barré syndrome (GBS). Unlike traditional vaccination approaches, oral dissolving films (ODFs) or mucoadhesive film technology is an emerging, exciting concept that can be used in the field of pharmaceuticals for vaccine design and formulation development. This attractive and novel method can help patients who suffer from dysphagia as a complication of a disease or syndrome. In this study, we investigated a microparticulate Zika vaccine administered via the buccal route with the help of thin films or oral dissolving films (ODFs) with a prime dose and two booster doses two weeks apart. In vitro, the ODFs displayed excellent physiochemical properties, indicating that the films were good carriers for vaccine microparticles and biocompatible with the buccal mucosa. In vivo results revealed robust humoral (IgG, subtypes IgG1 and IgG2a) and T-cell responses (CD4+/CD8+) for ZIKV-specific immunity. Both the Zika MP vaccine and the adjuvanted Zika MP vaccine affected memory (CD45R/CD27) and intracellular cytokine (TNF-α and IL-6) expression. In this study, ZIKV vaccination via the buccal route with the aid of ODFs demonstrated great promise for the development of pain-free vaccines for infectious diseases.

3.
Biochemistry ; 63(14): 1730-1737, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-38915291

RESUMEN

The cockroach allergen Bla g 1 encloses an exceptionally large hydrophobic cavity, which allows it to bind and deliver unsaturated fatty acid ligands. Bla g 1-mediated delivery of naturally occurring (nMix) ligands has been shown to destabilize lipid membranes, contributing to its digestive/antiviral functions within the source organism. However, the consequences of this activity on Bla g 1 allergenicity following human exposure remain unknown. In this work, we show that Bla g 1-mediated membrane disruption can induce a proinflammatory immune response in mammalian cells via two complementary pathways. At high concentrations, the cytotoxic activity of Bla g 1 induces the release of proinflammatory cytosolic contents including damage-associated molecular patterns (DAMPs) such as heat-shock Protein-70 (HSP70) and the cytokine interleukin-1 (IL-1ß). Sublytic concentrations of Bla g 1 enhanced the ability of phospholipase A2 (PLA2) to extract and hydrolyze phospholipid substrates from cellular membranes, stimulating the production of free polyunsaturated fatty acids (PUFAs) and various downstream inflammatory lipid mediators. Both of these effects are dependent on the presence of Bla g 1's natural fatty-acid (nMix) ligands with CC50 values corresponding to the concentrations required for membrane destabilization reported in previous studies. Taken together, these results suggest that mechanisms through which Bla g 1-mediated lipid delivery and membrane destabilization could directly contribute to cockroach allergic sensitization.


Asunto(s)
Alérgenos , Membrana Celular , Cucarachas , Animales , Humanos , Membrana Celular/metabolismo , Cucarachas/inmunología , Cucarachas/metabolismo , Alérgenos/metabolismo , Alérgenos/inmunología , Mediadores de Inflamación/metabolismo , Interleucina-1beta/metabolismo , Fosfolipasas A2/metabolismo , Fosfolipasas A2/inmunología , Proteínas HSP70 de Choque Térmico/metabolismo , Ácidos Grasos Insaturados/metabolismo , Proteínas de Insectos/metabolismo , Proteínas de Insectos/química
4.
Viruses ; 16(6)2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38932158

RESUMEN

Humans continue to be at risk from the Zika virus. Although there have been significant research advancements regarding Zika, the absence of a vaccine or approved treatment poses further challenges for healthcare providers. In this study, we developed a microparticulate Zika vaccine using an inactivated whole Zika virus as the antigen that can be administered pain-free via intranasal (IN) immunization. These microparticles (MP) were formulated using a double emulsion method developed by our lab. We explored a prime dose and two-booster-dose vaccination strategy using MPL-A® and Alhydrogel® as adjuvants to further stimulate the immune response. MPL-A® induces a Th1-mediated immune response and Alhydrogel® (alum) induces a Th2-mediated immune response. There was a high recovery yield of MPs, less than 5 µm in size, and particle charge of -19.42 ± 0.66 mV. IN immunization of Zika MP vaccine and the adjuvanted Zika MP vaccine showed a robust humoral response as indicated by several antibodies (IgA, IgM, and IgG) and several IgG subtypes (IgG1, IgG2a, and IgG3). Vaccine MP elicited a balance Th1- and Th2-mediated immune response. Immune organs, such as the spleen and lymph nodes, exhibited a significant increase in CD4+ helper and CD8+ cytotoxic T-cell cellular response in both vaccine groups. Zika MP vaccine and adjuvanted Zika MP vaccine displayed a robust memory response (CD27 and CD45R) in the spleen and lymph nodes. Adjuvanted vaccine-induced higher Zika-specific intracellular cytokines than the unadjuvanted vaccine. Our results suggest that more than one dose or multiple doses may be necessary to achieve necessary immunological responses. Compared to unvaccinated mice, the Zika vaccine MP and adjuvanted MP vaccine when administered via intranasal route demonstrated robust humoral, cellular, and memory responses. In this pre-clinical study, we established a pain-free microparticulate Zika vaccine that produced a significant immune response when administered intranasally.


Asunto(s)
Administración Intranasal , Anticuerpos Antivirales , Vacunas Virales , Infección por el Virus Zika , Virus Zika , Animales , Infección por el Virus Zika/prevención & control , Infección por el Virus Zika/inmunología , Virus Zika/inmunología , Ratones , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Vacunas Virales/inmunología , Vacunas Virales/administración & dosificación , Femenino , Inmunización/métodos , Adyuvantes Inmunológicos/administración & dosificación , Modelos Animales de Enfermedad , Adyuvantes de Vacunas/administración & dosificación , Vacunación/métodos , Citocinas/inmunología , Anticuerpos Neutralizantes/sangre , Anticuerpos Neutralizantes/inmunología
5.
Front Mol Biosci ; 11: 1384214, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38712342

RESUMEN

Background: Intrauterine growth restriction (IUGR) and preeclampsia (PE) are intricately linked with specific maternal health conditions, exhibit shared placental abnormalities, and play pivotal roles in precipitating preterm birth (PTB) incidences. However, the molecular mechanism underlying the association between PE and IUGR has not been determined. Therefore, we aimed to analyze the data of females with PE and those with PE + IUGR to identify the key gene(s), their molecular pathways, and potential therapeutic interactions. Methods: In this study, a comprehensive relationship analysis of both PE and PE + IUGR was conducted using RNA sequence datasets. Using two datasets (GSE148241 and GSE114691), differential gene expression analysis via DESeq2 through R-programming was performed. Gene set enrichment analysis was performed using ClusterProfiler, protein‒protein interaction (PPI) networks were constructed, and cluster analyses were conducted using String and MCODE in Cytoscape. Functional enrichment analyses of the resulting subnetworks were performed using ClueGO software. The hub genes were identified under both conditions using the CytoHubba method. Finally, the most common hub protein was docked against a library of bioactive flavonoids and PTB drugs using the PyRx AutoDock tool, followed by molecular dynamic (MD) simulation analysis. Pharmacokinetic analysis was performed to determine the ADMET properties of the compounds using pkCSM. Results: We identified eight hub genes highly expressed in the case of PE, namely, PTGS2, ENG, KIT, MME, CGA, GAPDH, GPX3, and P4HA1, and the network of the PE + IUGR gene set demonstrated that nine hub genes were overexpressed, namely, PTGS2, FGF7, FGF10, IL10, SPP1, MPO, THBS1, CYBB, and PF4. PTGS2 was the most common hub gene found under both conditions (PE and PEIUGR). Moreover, the greater (-9.1 kcal/mol) molecular binding of flavoxate to PTGS2 was found to have satisfactory pharmacokinetic properties compared with those of other compounds. The flavoxate-bound PTGS2 protein complex remained stable throughout the simulation; with a ligand fit to protein, i.e., a RMSD ranging from ∼2.0 to 4.0 Å and a RMSF ranging from ∼0.5 to 2.9 Å, was observed throughout the 100 ns analysis. Conclusion: The findings of this study may be useful for treating PE and IUGR in the management of PTB.

6.
bioRxiv ; 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38746431

RESUMEN

T cell receptor (TCR) engagement triggers T cell responses, yet how TCR-mediated activation is regulated at the plasma membrane remains unclear. Here, we report that deleting the membrane scaffolding protein Flotillin-2 (Flot2) increases T cell antigen sensitivity, resulting in enhanced TCR signaling and effector function to weak TCR stimulation. T cell-specific Flot2-deficient mice exhibited reduced tumor growth and enhanced immunity to infection. Flot2-null CD4 + T cells exhibited increased T helper 1 polarization, proliferation, Nur77 induction, and phosphorylation of ZAP70 and LCK upon weak TCR stimulation, indicating a sensitized TCR-triggering threshold. Single cell-RNA sequencing suggested that Flot2 - null CD4 + T cells follow a similar route of activation as wild-type CD4 + T cells but exhibit higher occupancy of a discrete activation state under weak TCR stimulation. Given prior reports that TCR clustering influences sensitivity of T cells to stimuli, we evaluated TCR distribution with super-resolution microscopy. Flot2 ablation increased the number of surface TCR nanoclusters on naïve CD4 + T cells. Collectively, we posit that Flot2 modulates T cell functionality to weak TCR stimulation, at least in part, by regulating surface TCR clustering. Our findings have implications for improving T cell reactivity in diseases with poor antigenicity, such as cancer and chronic infections.

7.
Plants (Basel) ; 13(8)2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38674476

RESUMEN

Herbal spices are an agricultural commodity, economically very important and beneficial in primary healthcare in the food and medicine sectors. Herbal spices are used as food flavoring agents as well as in phytotherapies throughout the world and have nutritive benefits. The food and medicine industries widely employ artificial or natural adulteration to retard the deterioration and utilization of these adulterants in food and medicine products has given rise to significant apprehension among consumers, primarily stemming from the potential health risks that they pose. Thus, their characterization for the purpose of identification, origin, and quality assurance is mandatory for safe human consumption. Here, we studied 22 samples of commonly traded herbal spices that belong to 20 different genera and 21 species comprising 14 families, investigated macroscopically or organoleptically as well as histologically under microscopic examination. In this study, we provide details on organoleptic features including appearance, taste, odor, color, shape, size, fractures, types of trichomes, and the presence of lenticels among the examined herbal spices and these features have great significance in the detection of both natural as well as artificial deterioration. In terms of microscopic characterization, each examined plant part comprising different anatomical characteristics has taxonomic importance and also provides useful information for authentication from natural adulterants. Furthermore, the studied taxa were also described with nutritive and therapeutic properties. For condiments, herbal beverages and medicinal purposes, different herbal parts such as leaves, floral buds, seeds, fruit, and accessory parts like mericarp, rhizome, bulbs, and bark were used and commercially traded. Similarly, in this study, the leaves of Cinnamomum tamala and Mentha spicata, the floral buds of Syzygium aromaticum, the seeds of Amomum subulatum, Brassica nigra, Punica granatum, Myristica fragrans, Phyllanthus emblica, and Elettaria cardamomum, the mericarp of Coriandrum sativum, and Cuminum cyminum were observed. As a result, we show the potential of herbal spices as a source of many valuable phytochemicals and essential nutrients for food, nutraceutical, and homoeopathic medicine.

8.
Pharmaceuticals (Basel) ; 17(2)2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38399399

RESUMEN

The molecule (S)-4,5-dihydroxy-2,3-pentanedione (DPD) is produced by many different species of bacteria and is involved in bacterial communication. DPD is the precursor of signal molecule autoinducer-2 (AI-2) and has high potential to be used as a vaccine adjuvant. Vaccine adjuvants are compounds that enhance the stability and immunogenicity of vaccine antigens, modulate efficacy, and increase the immune response to a particular antigen. Previously, the microparticulate form of (S)-DPD was found to have an adjuvant effect with the gonorrhea vaccine. In this study, we evaluated the immunogenicity and adjuvanticity of several synthetic analogs of the (S)-DPD molecule, including ent-DPD((R)-4,5-dihydroxy-2,3-pentanedione), n-butyl-DPD ((S)-1,2-dihydroxy-3,4-octanedione), isobutyl-DPD ((S)-1,2-dihydroxy-6-methyl-3,4-heptanedione), n-hexyl-DPD ((S)-1,2-dihydroxy-3,4-decanedione), and phenyl-DPD ((S)-3,4-dihydroxy-1-phenyl-1,2-butanedione), in microparticulate formulations. The microparticulate formulations of all analogs of (S)-DPD were found to be noncytotoxic toward dendritic cells. Among these analogs, ent-DPD, n-butyl-DPD, and isobutyl-DPD were found to be immunogenic toward antigens and showed adjuvant efficacy with microparticulate gonorrhea vaccines. It was observed that n-hexyl-DPD and phenyl-DPD did not show any adjuvant effect. This study shows that synthetic analogs of (S)-DPD molecules are capable of eliciting adjuvant effects with vaccines. A future in vivo evaluation will further confirm that these analogs are promising vaccine adjuvants.

9.
Gels ; 9(11)2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37998961

RESUMEN

Tacrolimus (TL) is a topical calcineurin inhibitor immunosuppressive drug widely used to manage various skin disorders. Herein, we report a TL-loaded microsphere gel formulation with severe atopic dermatitis effects that are required to manage skin disorders. The current study adopted a modified emulsion solvent evaporation technique to synthesize TL-loaded microspheres, which were further converted into gels for skin use. Characterization of the synthesized formulation was performed by differential dynamic light scattering, scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, X-ray crystallography, Brunauer-Emmett-Teller (BET) analysis, differential scanning calorimetry, and drug release. A Franz diffusion cell was used to study the diffusion of TL for up to 8 h at pH 6.8 and 5.5. Evaluation of cell viability was determined by MTT assay and showed higher IC50 values compared to the plain drug. RNA extraction, real-time polymerase chain reaction (RT-PCR), and reverse transcription were also performed to determine the expression levels of the anti-inflammatory cytokine IL-2. Particle size determination was performed by a zeta sizer, and the TL microsphere size was 1745 ± 70 nm with a good polydispersity (0.337 ± 0.12). The drug entrapment efficiency was also very good at 60% ± 10, and the drug release was 93.9% ± 3.5 within 8 h. An in vitro diffusion study of the formulation also showed improved permeability at both pH values (4.5 and 5.5). The findings of the hemolytic tests demonstrated that TL-MG at concentrations of 50, 100, and 200 mg/mL did not produce any hemolysis. A dose-dependent pattern of cytotoxicity was found during the cell viability assay, with an IC50 value of 787.55 ± 12.78 µg/mL. There was a significant decrease in the IL-2 level in the TL-MG group compared to the other groups. TL-MG microspheres were nontoxic carriers for tacrolimus delivery, with greater loading capacity, a significant release profile, and enhanced cellular uptake with improved permeability.

10.
Heliyon ; 9(9): e19326, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37681127

RESUMEN

Alpha arbutin is a skin-whitening agent in cosmetics. Structurally, it is 4-hydroxyphenyl-α-glucopyranoside. Ethosomes encourage the formation of lamellar-shaped vesicles with improved solubility and entrapment of whitening agents. The objective of this study was to fabricate an optimized nanostructured ethosomal gel loaded with alpha arbutin for the treatment of skin pigmentation. Different ethosomal suspensions of alpha arbutin were prepared by the cold method. Invitro evaluation included zeta potential, droplet size analysis, polydispersity index, entrapment efficiency (EE), scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) spectroscopy. Stability studies of the optimized ethosomal and control gels were performed for three months under different temperature conditions. The optimized ethosomal gel loaded with alpha arbutin was further analyzed on human volunteers for skin benefits by measuring melanin level, moisture content and elasticity. It was concluded that the optimized formulation had a size, zeta potential, polydispersity index and entrapment efficiency of 196.87 nm, -45.140 mV, 0.217 and 93.458343%, respectively. Scanning electron microscopy (SEM) depicted spherical ethosomal vesicles. Stability data was obtained in terms of pH and conductivity. Rheological analysis revealed non-Newtonian flow. The cumulative drug permeated for ethosomal gel was 78.4%. Moreover, encapsulation of alpha arbutin causes significant improvement in skin melanin, moisture content and elasticity. The overall findings suggested that the arbutin-loaded ethosomal formulation was stable and could be a better approach than conventional formulation for cosmeceutical purposes such as for depigmentation and moisturizing effects.

11.
Gels ; 9(9)2023 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-37754378

RESUMEN

PURPOSE: The goal of this study was to make pH-sensitive HPMC/Neocel C19-based interpenetrating polymeric networks (IPNs) that could be used to treat different diseases. An assembled novel carrier system was demonstrated in this study to achieve multiple functions such as drug protection and self-regulated release. METHODS: Misoprostol (MPT) was incorporated as a model drug in hydroxyl-propyl-methylcellulose (HPMC)- and Neocel C19-based IPNs for controlled release. HPMC- and Neocel C19-based IPNs were fabricated through an aqueous polymerization method by utilizing the polymers HPMC and Neocel C19, the initiator ammonium peroxodisulfate (APS), the crosslinker methylenebisacrylamide (MBA), and the monomer methacrylic acid (MAA). An IPN based on these materials was created using an aqueous polymerization technique. Samples of IPN were analyzed using scanning electron microscopy (SEM), atomic force microscopy (AFM), differential scanning calorimetry (DSC), thermal analysis (TGA), and powder X-ray diffraction (PXRD). The effects of the pH levels 1.2 and 7.4 on these polymeric networks were also studied in vitro and through swelling experiments. We also performed in vivo studies on rabbits using commercial tablets and hydrogels. RESULTS: The thermal stability measured using TGA and DSC for the revised formulation was higher than that of the individual components. Crystallinity was low and amorphousness was high in the polymeric networks, as revealed using powder X-ray diffraction (PXRD). The results from the SEM analysis demonstrated that the surface of the polymeric networks is uneven and porous. Better swelling and in vitro results were achieved at a high pH (7.4), which endorses the pH-responsive characteristics of IPN. Drug release was also increased in 7.4 pH (80% in hours). The pharmacokinetic properties of the drugs showed improvement in our work with hydrogel. The tablet MRT was 13.17 h, which was decreased in the hydrogels, and its AUC was increased from 314.41 ng h/mL to 400.50 ng h/mL in hydrogels. The blood compatibility of the IPN hydrogel was measured using different weights (100 mg, 200 mg, 400 mg, and 600 mg; 5.34%, 12.51%, 20.23%, and 29.37%, respectively). CONCLUSIONS: As a result, IPN composed of HPMC and Neocel C19 was successfully synthesized, and it is now possible to use it for the controlled release of MPT.

12.
Pharmaceuticals (Basel) ; 16(8)2023 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-37631046

RESUMEN

COVID-19 continues to cause an increase in the number of cases and deaths worldwide. Due to the ever-mutating nature of the virus, frequent vaccination against COVID-19 is anticipated. Most of the approved SARS-CoV-2 vaccines are administered using the conventional intramuscular route, causing vaccine hesitancy. Thus, there is a need for an effective, non-invasive vaccination strategy against COVID-19. This study evaluated the synergistic effects of a subunit microparticulate vaccine delivered using microneedles. The microparticles encapsulated a highly immunogenic subunit protein of the SARS-CoV-2 virus, such as the spike protein's receptor binding domain (RBD). Adjuvants were also incorporated to enhance the spike RBD-specific immune response. Our vaccination study reveals that a microneedle-based vaccine delivering these microparticles induced spike RBD-specific IgM, IgG, IgG1, IgG2a, and IgA antibodies. The vaccine also generated high levels of CD4+ and CD8a+ molecules in the secondary lymphoid organs. Overall, dissolving microneedles delivery spike RBD antigen in microparticulate form induced a robust immune response, paving the way for an alternative self-administrable, non-invasive vaccination strategy against COVID-19.

13.
Saudi Pharm J ; 31(9): 101697, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37559864

RESUMEN

The aim of this study is to formulate polymeric paclitaxel nanoparticles with various stabilizers to improve solubility, enhance stability, maximize therapeutic efficacy and minimize detrimental toxicities of paclitaxel. In this study, trastuzumab-guided poly lactic-co-glycolic acid (PLGA)-loaded paclitaxel nanoparticles were formulated with pluronic F-127, polyvinyl alcohol (PVA), poloxamer 407, Tween-80, span 20, sodium dodecyl sulfate (SDS), and sodium lauryl sulfate (SLS) at different concentrations (0.5, 1, 1.5 and 2%) using the solvent evaporation method. The nanoparticles were evaluated for physicochemical characteristics and short and long-term stability. The optimum particle size (190 nm ± 12.42 to 350 nm ± 11.1), PDI (0.13 ± 0.02 to 0.2 ± 0.01), surface charge (-19.1mv ± 1.5 to -40.4mv ± 1.6), drug loading (2.43 to 9.5 %) and encapsulation efficiency (greater than 80 %) were obtained with these stabilizers while keeping the polymer concentration, temperature, probe size, amplitude and sonication time constant. The nanoformulations were stably stored at 4 °C. The nanoformulations of paclitaxel with pluronic F-127, polyvinyl alcohol (PVA), and poloxamer 407 were found to be more soluble, stable, uniform in physicochemical properties, and efficient in drug loading and encapsulation for improved therapeutic effects.

14.
Gels ; 9(7)2023 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-37504430

RESUMEN

PURPOSE: Numerous carbohydrate polymers are frequently used in wound-dressing films because they are highly effective materials for promoting successful wound healing. In this study, we prepared amikacin (AM)-containing hydrogel films through the cross-linking of chitosan (CS) with folic acid along with methacrylic acid (MA), ammonium peroxodisulfate (APS), and methylenebisacrylamide (MBA). In the current studies, an effort has been made to look at the possibilities of these materials in developing new hydrogel film wound dressings meant for a slow release of the antibiotic AM and to enhance the potential for wound healing. METHODS: Free-radical polymerization was used to generate the hydrogel film, and different concentrations of the CS polymer were used. Measurements were taken of the film thickness, weight fluctuation, folding resistance, moisture content, and moisture uptake. HPLC, FTIR, SEM, DSC, and AFM analyses were some of the different techniques used to confirm that the films were successfully developed. RESULTS: The AM release profile demonstrated regulated release over a period of 24 h in simulated wound media at pH 5.5 and 7.4, with a low initial burst release. The antibacterial activity against gram-negative bacterial strains exhibited substantial effectiveness, with inhibitory zones measuring approximately 20.5 ± 0.1 mm. Additionally, in vitro cytocompatibility assessments demonstrated remarkable cell viability, surpassing 80%, specifically when evaluated against human skin fibroblast (HFF-1) cells. CONCLUSIONS: The exciting findings of this study indicate the promising potential for further development and testing of these hydrogel films, offering effective and controlled antibiotic release to enhance the process of wound healing.

15.
Int J Mol Sci ; 24(13)2023 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-37445784

RESUMEN

This study focused on developing an influenza vaccine delivered in polymeric nanoparticles (NPs) using dissolving microneedles. We first formulated an influenza extracellular matrix protein 2 virus-like particle (M2e VLP)-loaded with poly(lactic-co-glycolic) acid (PLGA) nanoparticles, yielding M2e5x VLP PLGA NPs. The vaccine particles were characterized for their physical properties and in vitro immunogenicity. Next, the M2e5x VLP PLGA NPs, along with the adjuvant Alhydrogel® and monophosphoryl lipid A® (MPL-A®) PLGA NPs, were loaded into fast-dissolving microneedles. The vaccine microneedle patches were then evaluated in vivo in a murine model. The results from this study demonstrated that the vaccine nanoparticles effectively stimulated antigen-presenting cells in vitro resulting in enhanced autophagy, nitric oxide, and antigen presentation. In mice, the vaccine elicited M2e-specific antibodies in both serum and lung supernatants (post-challenge) and induced significant expression of CD4+ and CD8+ populations in the lymph nodes and spleens of immunized mice. Hence, this study demonstrated that polymeric particulates for antigen and adjuvant encapsulation, delivered using fast-dissolving microneedles, significantly enhanced the immunogenicity of a conserved influenza antigen.


Asunto(s)
Vacunas contra la Influenza , Gripe Humana , Nanopartículas , Ratones , Animales , Humanos , Gripe Humana/prevención & control , Antígenos , Adyuvantes Inmunológicos/farmacología , Nanopartículas/química , Ratones Endogámicos BALB C , Anticuerpos Antivirales
16.
Polymers (Basel) ; 15(14)2023 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-37514436

RESUMEN

OBJECTIVES: To evaluate the release profile of different modified-release oral formulations of niacin, such as immediate-release (IR) powder and tablets, timed-release (TR) caplets, extended-release (ER) capsules, and controlled-release (CR) tablets, to assure their defined release pattern and correlate this release with their matrix polymers. SIGNIFICANCE: Niacin is used to manage hyperlipidemia by reducing cutaneous flushing and hepatotoxicity adverse events. The release profiles of different types of modified-release dosage forms depend on the types of coating materials (polymers) used in the matrix formation. Although different types of niacin formulations exist, none of the niacin dissolution profiles have been evaluated and compared in the literature. METHODS: Four commercial orally modified-release niacin brands were collected from a local CVS pharmacy retail store, in Miami, FL, USA. The in vitro release study was conducted in simulated gastric fluid (SGF) and simulated intestinal fluid (SIF) conditions. RESULTS: The results of the release patterns of four niacin-modified dosage forms (IR, ER, TR, and CR) were aligned with their release definitions. However, the CR dosage form did not follow an ideal release pattern. CONCLUSIONS: The release rate of niacin in vitro was pH dependent, which was confirmed by the similarity factor (f2) results. All the f2 comparison values were below 50 in both the SIF and SGF media, while all the comparisons were below the f2 values for all brands in the SIF media.

17.
eNeuro ; 10(6)2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37253591

RESUMEN

The midbrain periaqueductal gray (PAG), particularly its ventrolateral column (vlPAG), is part of a key descending pathway that modulates nociception, fear and anxiety behaviors in both humans and rodents. It has been previously demonstrated that inhibitory GABAergic neurons within the vlPAG have a major role in this nociceptive modulation. However, the PAG contains a diverse range of neuronal subtypes and the contribution of different subtypes of inhibitory neurons to nociceptive control has not been investigated. Here, we employed a chemogenetic strategy in mice that express Cre recombinase under the promotor for the glycine transporter 2 (GlyT2::cre) to modulate a novel group of glycinergic neurons within the vlPAG and then investigate their role in nociceptive control. We show that activation of GlyT2-PAG neurons enhances cold and noxious heat responses and increases locomotor activity (LMA) in both male and female mice. In contrast, inhibition of GlyT2-PAG neurons reduced nociceptive responses, while locomotor behaviors were unaffected. Our findings demonstrate that GlyT2+ neurons in the vlPAG modulate nociception and suggest that strategies targeting GlyT2-PAG neurons could be used to design novel analgesic therapies.


Asunto(s)
Nocicepción , Sustancia Gris Periacueductal , Humanos , Masculino , Femenino , Ratones , Animales , Sustancia Gris Periacueductal/metabolismo , Nocicepción/fisiología , Neuronas/fisiología , Miedo , Ansiedad
18.
Pharmaceuticals (Basel) ; 16(5)2023 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-37242496

RESUMEN

Autoinducers AI-1 and AI-2 play an important role in bacterial quorum sensing (QS), a form of chemical communication between bacteria. The autoinducer N-octanoyl-L-Homoserinehomoserine lactone (C8-HSL) serves as a major inter- and intraspecies communicator or 'signal', mainly for Gram-negative bacteria. C8-HSL is proposed to have immunogenic properties. The aim of this project is to evaluate C8-HSL as a potential vaccine adjuvant. For this purpose, a microparticulate formulation was developed. The C8-HSL microparticles (MPs) were formulated by a water/oil/water (W/O/W) double-emulsion solvent evaporation method using PLGA (poly (lactic-co-glycolic acid)) polymer. We tested C8-HSL MPs with two spray-dried bovine serum albumin (BSA)-encapsulated bacterial antigens: colonization factor antigen I (CFA/I) from Escherichia coli (E. coli.) and the inactive protective antigen (PA) from Bacillus anthracis (B. anthracis). We formulated and tested C8-HSL MP to determine its immunogenicity potential and its ability to serve as an adjuvant with particulate vaccine formulations. An in vitro immunogenicity assessment was performed using Griess's assay, which indirectly measures the nitric oxide radical (NOˑ) released by dendritic cells (DCs). The C8-HSL MP adjuvant was compared with FDA-approved adjuvants to determine its immunogenicity potential. C8-HSL MP was combined with particulate vaccines for measles, Zika and the marketed influenza vaccine. The cytotoxicity study showed that MPs were non-cytotoxic toward DCs. Griess's assay showed a comparable release of NOˑ from DCs when exposed to CFA and PA bacterial antigens. Nitric oxide radical (NOˑ) release was significantly higher when C8-HSL MPs were combined with particulate vaccines for measles and Zika. C8-HSL MPs showed immunostimulatory potential when combined with the influenza vaccine. The results showed that C8-HSL MPs were as immunogenic as FDA-approved adjuvants such as alum, MF59, and CpG. This proof-of-concept study showed that C8-HSL MP displayed adjuvant potential when combined with several particulate vaccines, indicating that C8-HSL MPs can increase the immunogenicity of both bacterial and viral vaccines.

19.
Vaccines (Basel) ; 11(3)2023 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-36992167

RESUMEN

Although the global Zika epidemic in 2015-16 fueled vaccine development efforts, there is no approved Zika vaccine or treatment available to date. Current vaccine platforms in clinical trials are administered via either subcutaneous or intramuscular injections, which are painful and decrease compliance. Therefore, in the present study, we explored Zika vaccine microparticles (MPs)-loaded dissolving microneedles (MNs) with adjuvant MPs encapsulating Alhydrogel® and MPL-A® administered via the transdermal route as a pain-free vaccine strategy. We characterized the MNs for needle length, pore formation, and dissolvability when applied to murine skin. Further, we evaluated the in vivo efficacy of vaccine MPs-loaded MNs with or without adjuvants by measuring the immune response after transdermal immunization. The vaccine MPs-loaded dissolving MNs with adjuvants induced significant IgG, IgG1, and IgG2a titers in immunized mice compared to the untreated control group. After the dosing regimen, the animals were challenged with Zika virus, monitored for seven days, and sacrificed to collect spleen and lymph nodes. The lymphocytes and splenocytes from the immunized mice showed significant expressions of helper (CD4) and cytotoxic (CD8a) cell surface markers compared to the control group. Thus, this study puts forth a 'proof-of-concept' for a pain-free transdermal vaccine strategy against Zika.

20.
Pharmaceutics ; 15(3)2023 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-36986756

RESUMEN

SARS-CoV-2, the causal agent of COVID-19, is a contagious respiratory virus that frequently mutates, giving rise to variant strains and leading to reduced vaccine efficacy against the variants. Frequent vaccination against the emerging variants may be necessary; thus, an efficient vaccination system is needed. A microneedle (MN) vaccine delivery system is non-invasive, patient-friendly, and can be self-administered. Here, we tested the immune response produced by an adjuvanted inactivated SARS-CoV-2 microparticulate vaccine administered via the transdermal route using a dissolving MN. The inactivated SARS-CoV-2 vaccine antigen and adjuvants (Alhydrogel® and AddaVax™) were encapsulated in poly(lactic-co-glycolic acid) (PLGA) polymer matrices. The resulting MP were approximately 910 nm in size, with a high percentage yield and percent encapsulation efficiency of 90.4%. In vitro, the vaccine MP was non-cytotoxic and increased the immunostimulatory activity measured as nitric oxide release from dendritic cells. The adjuvant MP potentiated the immune response of the vaccine MP in vitro. In vivo, the adjuvanted SARS-CoV-2 MP vaccine induced high levels of IgM, IgG, IgA, IgG1, and IgG2a antibodies and CD4+ and CD8+ T-cell responses in immunized mice. In conclusion, the adjuvanted inactivated SARS-CoV-2 MP vaccine delivered using MN induced a robust immune response in vaccinated mice.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...