RESUMEN
Biofilm formation by Aeromonas hydrophila in the food industry poses significant challenges to food safety and quality. Therefore, this comprehensive review aimed to provide insights into the mechanisms and key factors influencing A. hydrophila biofilm formation. It explores the molecular processes involved in initial attachment, microcolony formation, and biofilm maturation; moreover, it concurrently examines the impact of intrinsic factors, including quorum sensing, cyclic-di-GMP, the efflux pump, and antibiotic resistance, as well as environmental conditions, such as temperature, nutrient availability, and osmotic pressure, on biofilm architecture and resilience. Furthermore, the article highlights the potential of bibliometric analysis as a promising method for conceptualizing the research landscape of and identifying knowledge gaps in A. hydrophila biofilm research. The findings underscore the requirement for focused interventions that prevent biofilm development and raise food sector safety. The consolidation of current information and incorporation of bibliometric analysis enhances existing understanding of A. hydrophila biofilm formation and offers insights for future research and control strategies within a food industry context.
Asunto(s)
Aeromonas hydrophila , Biopelículas , Percepción de Quorum , Bibliometría , Industria de AlimentosRESUMEN
The recalcitrance of microbial aggregation or biofilm in the food industry underpins the emerging antimicrobial resistance among foodborne pathogens, exacerbating the phenomena of food spoilage, processing and safety management failure, and the prevalence of foodborne illnesses. The challenges of growing tolerance to current chemical and disinfectant-based antibiofilm strategies have driven the urgency in finding a less vulnerable to bacterial resistance, effective alternative antibiofilm agent. To address these issues, various novel strategies are suggested in current days to combat bacterial biofilm. Among the innovative approaches, phytochemicals have already demonstrated their excellent performance in preventing biofilm formation and bactericidal actions against resident bacteria within biofilms. However, the diverse group of phytochemicals and their different modes of action become a barrier to applying them against specific pathogenic biofilm-formers. This phenomenon mandates the need to elucidate the multi-mechanistic actions of phytochemicals to design an effective novel antibiofilm strategy. Therefore, this review critically illustrates the structure - activity relationship, functional sites of actions, and target molecules of diverse phytochemicals regarding multiple major antibiofilm mechanisms and reversal mechanisms of antimicrobial resistance. The implementation of the in-depth knowledge will hopefully aid future studies for developing phytochemical-based next-generation antimicrobials.