Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Genome Biol ; 24(1): 284, 2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-38066546

RESUMEN

BACKGROUND: Point mutations in histone variant H3.3 (H3.3K27M, H3.3G34R) and the H3.3-specific ATRX/DAXX chaperone complex are frequent events in pediatric gliomas. These H3.3 point mutations affect many chromatin modifications but the exact oncogenic mechanisms are currently unclear. Histone H3.3 is known to localize to nuclear compartments known as promyelocytic leukemia (PML) nuclear bodies, which are frequently mutated and confirmed as oncogenic drivers in acute promyelocytic leukemia. RESULTS: We find that the pediatric glioma-associated H3.3 point mutations disrupt the formation of PML nuclear bodies and this prevents differentiation down glial lineages. Similar to leukemias driven by PML mutations, H3.3-mutated glioma cells are sensitive to drugs that target PML bodies. We also find that point mutations in IDH1/2-which are common events in adult gliomas and myeloid leukemias-also disrupt the formation of PML bodies. CONCLUSIONS: We identify PML as a contributor to oncogenesis in a subset of gliomas and show that targeting PML bodies is effective in treating these H3.3-mutated pediatric gliomas.


Asunto(s)
Neoplasias Encefálicas , Glioma , Histonas , Adulto , Niño , Humanos , Neoplasias Encefálicas/genética , Glioma/genética , Histonas/genética , Mutación , Cuerpos Nucleares de la Leucemia Promielocítica/genética , Cuerpos Nucleares de la Leucemia Promielocítica/patología
2.
Nucleic Acids Res ; 50(8): 4500-4514, 2022 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-35451487

RESUMEN

Histone H3.3 is an H3 variant which differs from the canonical H3.1/2 at four residues, including a serine residue at position 31 which is evolutionarily conserved. The H3.3 S31 residue is phosphorylated (H3.3 S31Ph) at heterochromatin regions including telomeres and pericentric repeats. However, the role of H3.3 S31Ph in these regions remains unknown. In this study, we find that H3.3 S31Ph regulates heterochromatin accessibility at telomeres during replication through regulation of H3K9/K36 histone demethylase KDM4B. In mouse embryonic stem (ES) cells, substitution of S31 with an alanine residue (H3.3 A31 -phosphorylation null mutant) results in increased KDM4B activity that removes H3K9me3 from telomeres. In contrast, substitution with a glutamic acid (H3.3 E31, mimics S31 phosphorylation) inhibits KDM4B, leading to increased H3K9me3 and DNA damage at telomeres. H3.3 E31 expression also increases damage at other heterochromatin regions including the pericentric heterochromatin and Y chromosome-specific satellite DNA repeats. We propose that H3.3 S31Ph regulation of KDM4B is required to control heterochromatin accessibility of repetitive DNA and preserve chromatin integrity.


Asunto(s)
Heterocromatina , Histonas , Animales , Ratones , Histonas/genética , Histonas/metabolismo , Heterocromatina/genética , Histona Demetilasas/metabolismo , Fosforilación , Ensamble y Desensamble de Cromatina
3.
Nat Commun ; 9(1): 3142, 2018 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-30087349

RESUMEN

An array of oncogenic histone point mutations have been identified across a number of different cancer studies. It has been suggested that some of these mutant histones can exert their effects by inhibiting epigenetic writers. Here, we report that the H3.3 G34R (glycine to arginine) substitution mutation, found in paediatric gliomas, causes widespread changes in H3K9me3 and H3K36me3 by interfering with the KDM4 family of K9/K36 demethylases. Expression of a targeted single-copy of H3.3 G34R at endogenous levels induced chromatin alterations that were comparable to a KDM4 A/B/C triple-knockout. We find that H3.3 G34R preferentially binds KDM4 while simultaneously inhibiting its enzymatic activity, demonstrating that histone mutations can act through inhibition of epigenetic erasers. These results suggest that histone point mutations can exert their effects through interactions with a range of epigenetic readers, writers and erasers.


Asunto(s)
Neoplasias Encefálicas/metabolismo , Cromatina/química , Glioblastoma/metabolismo , Histonas/metabolismo , Mutación , Mutación Puntual , Animales , Arginina/química , Biotinilación , Neoplasias Encefálicas/genética , Niño , Modelos Animales de Enfermedad , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Epigénesis Genética , Regulación Neoplásica de la Expresión Génica , Glioblastoma/genética , Glicina/química , Histonas/genética , Humanos , Ratones , Unión Proteica , Análisis de Secuencia de ARN , Transgenes
4.
Nat Commun ; 9(1): 3309, 2018 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-30120252

RESUMEN

Nuclear actin and actin-related proteins (Arps) are key components of chromatin remodeling and modifying complexes. Although Arps are essential for the functions of chromatin remodelers, their specific roles and mechanisms are unclear. Here we define the nucleosome binding interfaces and functions of the evolutionarily conserved Arps in the yeast INO80 chromatin remodeling complex. We show that the N-terminus of Arp8, C-terminus of Arp4 and the HSA domain of Ino80 bind extranucleosomal DNA 37-51 base pairs from the edge of nucleosomes and function as a DNA-length sensor that regulates nucleosome sliding by INO80. Disruption of Arp8 and Arp4 binding to DNA uncouples ATP hydrolysis from nucleosome mobilization by disengaging Arp5 from the acidic patch on histone H2A-H2B and the Ino80-ATPase domain from the Super-helical Location (SHL) -6 of nucleosomes. Our data suggest a functional interplay between INO80's Arp8-Arp4-actin and Arp5 modules in sensing the DNA length separating nucleosomes and regulating nucleosome positioning.


Asunto(s)
Actinas/metabolismo , Ensamble y Desensamble de Cromatina , ADN de Hongos/metabolismo , Proteínas de Microfilamentos/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Actinas/química , Sitios de Unión , Proteínas de Microfilamentos/química , Proteínas Nucleares/química , Nucleosomas/metabolismo , Unión Proteica , Dominios Proteicos , Proteínas de Saccharomyces cerevisiae/química
5.
Proc Natl Acad Sci U S A ; 115(18): 4737-4742, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29669917

RESUMEN

ATRX (alpha thalassemia/mental retardation X-linked) complexes with DAXX to deposit histone variant H3.3 into repetitive heterochromatin. Recent genome sequencing studies in cancers have revealed mutations in ATRX and their association with ALT (alternative lengthening of telomeres) activation. Here we report depletion of ATRX in mouse ES cells leads to selective loss in ribosomal RNA gene (rDNA) copy number. Supporting this, ATRX-mutated human ALT-positive tumors also show a substantially lower rDNA copy than ALT-negative tumors. Further investigation shows that the rDNA copy loss and repeat instability are caused by a disruption in H3.3 deposition and thus a failure in heterochromatin formation at rDNA repeats in the absence of ATRX. We also find that ATRX-depleted cells are reduced in ribosomal RNA transcription output and show increased sensitivity to RNA polymerase I (Pol I) transcription inhibitor CX5461. In addition, human ALT-positive cancer cell lines are also more sensitive to CX5461 treatment. Our study provides insights into the contribution of ATRX loss of function to tumorigenesis through the loss of rDNA stability and suggests the therapeutic potential of targeting Pol I transcription in ALT cancers.


Asunto(s)
ADN de Neoplasias/metabolismo , ADN Ribosómico/metabolismo , Dosificación de Gen , Mutación , Proteínas de Neoplasias/metabolismo , Neoplasias/metabolismo , Proteína Nuclear Ligada al Cromosoma X/metabolismo , Benzotiazoles/farmacología , Línea Celular Tumoral , ADN de Neoplasias/genética , ADN Ribosómico/genética , Inestabilidad Genómica , Humanos , Naftiridinas/farmacología , Proteínas de Neoplasias/genética , Neoplasias/genética , Neoplasias/patología , ARN Polimerasa I/antagonistas & inhibidores , ARN Polimerasa I/genética , ARN Polimerasa I/metabolismo , Transcripción Genética/efectos de los fármacos , Transcripción Genética/genética , Proteína Nuclear Ligada al Cromosoma X/genética
6.
Nucleic Acids Res ; 45(21): 12340-12353, 2017 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-29040668

RESUMEN

AURKB (Aurora Kinase B) is a serine/threonine kinase better known for its role at the mitotic kinetochore during chromosome segregation. Here, we demonstrate that AURKB localizes to the telomeres in mouse embryonic stem cells, where it interacts with the essential telomere protein TERF1. Loss of AURKB function affects TERF1 telomere binding and results in aberrant telomere structure. In vitro kinase experiments successfully identified Serine 404 on TERF1 as a putative AURKB target site. Importantly, in vivo overexpression of S404-TERF1 mutants results in fragile telomere formation. These findings demonstrate that AURKB is an important regulator of telomere structural integrity.


Asunto(s)
Aurora Quinasa B/metabolismo , Telómero/enzimología , Proteína 1 de Unión a Repeticiones Teloméricas/metabolismo , Animales , Aurora Quinasa B/fisiología , Línea Celular , Células Madre Embrionarias/enzimología , Humanos , Interfase/genética , Ratones , Mitosis/genética , Mutación , Unión Proteica , Telómero/ultraestructura , Proteína 1 de Unión a Repeticiones Teloméricas/química , Proteína 1 de Unión a Repeticiones Teloméricas/genética
7.
Nat Commun ; 8: 15616, 2017 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-28604691

RESUMEN

ATP-dependent chromatin remodellers modulate nucleosome dynamics by mobilizing or disassembling nucleosomes, as well as altering nucleosome composition. These chromatin remodellers generally function by translocating along nucleosomal DNA at the H3-H4 interface of nucleosomes. Here we show that, unlike other remodellers, INO80 translocates along DNA at the H2A-H2B interface of nucleosomes and persistently displaces DNA from the surface of H2A-H2B. DNA translocation and DNA torsional strain created near the entry site of nucleosomes by INO80 promotes both the mobilization of nucleosomes and the selective exchange of H2A.Z-H2B dimers out of nucleosomes and replacement by H2A-H2B dimers without any additional histone chaperones. We find that INO80 translocates and mobilizes H2A.Z-containing nucleosomes more efficiently than those containing H2A, partially accounting for the preference of INO80 to replace H2A.Z with H2A. Our data suggest that INO80 has a mechanism for dimer exchange that is distinct from other chromatin remodellers including its paralogue SWR1.


Asunto(s)
Adenosina Trifosfatasas/genética , Ensamble y Desensamble de Cromatina/genética , ADN de Hongos/genética , Histonas/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Adenosina Trifosfatasas/metabolismo , Cromatina/metabolismo , Saccharomyces cerevisiae/metabolismo
8.
Nucleic Acids Res ; 43(21): 10227-37, 2015 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-26304540

RESUMEN

In addition to being a hallmark at active genes, histone variant H3.3 is deposited by ATRX at repressive chromatin regions, including the telomeres. It is unclear how H3.3 promotes heterochromatin assembly. We show that H3.3 is targeted for K9 trimethylation to establish a heterochromatic state enriched in trimethylated H3.3K9 at telomeres. In H3f3a(-/-) and H3f3b(-/-) mouse embryonic stem cells (ESCs), H3.3 deficiency results in reduced levels of H3K9me3, H4K20me3 and ATRX at telomeres. The H3f3b(-/-) cells show increased levels of telomeric damage and sister chromatid exchange (t-SCE) activity when telomeres are compromised by treatment with a G-quadruplex (G4) DNA binding ligand or by ASF1 depletion. Overexpression of wild-type H3.3 (but not a H3.3K9 mutant) in H3f3b(-/-) cells increases H3K9 trimethylation level at telomeres and represses t-SCE activity induced by a G4 ligand. This study demonstrates the importance of H3.3K9 trimethylation in heterochromatin formation at telomeres. It provides insights into H3.3 function in maintaining integrity of mammalian constitutive heterochromatin, adding to its role in mediating transcription memory in the genome.


Asunto(s)
Heterocromatina/metabolismo , Código de Histonas , Histonas/metabolismo , Lisina/metabolismo , Telómero/metabolismo , Animales , Células Cultivadas , Daño del ADN , Eliminación de Gen , Histonas/química , Histonas/genética , Metilación , Ratones , Intercambio de Cromátides Hermanas , Transcripción Genética
9.
Nucleic Acids Res ; 43(5): 2603-14, 2015 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-25690891

RESUMEN

Human ALT cancers show high mutation rates in ATRX and DAXX. Although it is well known that the absence of ATRX/DAXX disrupts H3.3 deposition at heterochromatin, its impact on H3.3 deposition and post-translational modification in the global genome remains unclear. Here, we explore the dynamics of phosphorylated H3.3 serine 31 (H3.3S31ph) in human ALT cancer cells. While H3.3S31ph is found only at pericentric satellite DNA repeats during mitosis in most somatic human cells, a high level of H3.3S31ph is detected on the entire chromosome in ALT cells, attributable to an elevated CHK1 activity in these cells. Drug inhibition of CHK1 activity during mitosis and expression of mutant H3.3S31A in these ALT cells result in a decrease in H3.3S31ph levels accompanied with increased levels of phosphorylated H2AX serine 139 on chromosome arms and at the telomeres. Furthermore, the inhibition of CHK1 activity in these cells also reduces cell viability. Our findings suggest a novel role of CHK1 as an H3.3S31 kinase, and that CHK1-mediated H3.3S31ph plays an important role in the maintenance of chromatin integrity and cell survival in ALT cancer cells.


Asunto(s)
Ensamble y Desensamble de Cromatina , Cromatina/metabolismo , Histonas/metabolismo , Proteínas Quinasas/metabolismo , Western Blotting , Línea Celular Transformada , Línea Celular Tumoral , Supervivencia Celular/genética , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1) , Cromatina/genética , ADN Helicasas/genética , ADN Helicasas/metabolismo , Células HT29 , Células HeLa , Histonas/genética , Humanos , Microscopía Fluorescente , Mutación , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patología , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fosforilación , Proteínas Quinasas/genética , Interferencia de ARN , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Serina/genética , Serina/metabolismo , Telómero/genética , Telómero/metabolismo , Proteína Nuclear Ligada al Cromosoma X
10.
Genome Res ; 25(2): 213-25, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25373146

RESUMEN

Mitosis entails global alterations to chromosome structure and nuclear architecture, concomitant with transient silencing of transcription. How cells transmit transcriptional states through mitosis remains incompletely understood. While many nuclear factors dissociate from mitotic chromosomes, the observation that certain nuclear factors and chromatin features remain associated with individual loci during mitosis originated the hypothesis that such mitotically retained molecular signatures could provide transcriptional memory through mitosis. To understand the role of chromatin structure in mitotic memory, we performed the first genome-wide comparison of DNase I sensitivity of chromatin in mitosis and interphase, using a murine erythroblast model. Despite chromosome condensation during mitosis visible by microscopy, the landscape of chromatin accessibility at the macromolecular level is largely unaltered. However, mitotic chromatin accessibility is locally dynamic, with individual loci maintaining none, some, or all of their interphase accessibility. Mitotic reduction in accessibility occurs primarily within narrow, highly DNase hypersensitive sites that frequently coincide with transcription factor binding sites, whereas broader domains of moderate accessibility tend to be more stable. In mitosis, proximal promoters generally maintain their accessibility more strongly, whereas distal regulatory elements tend to lose accessibility. Large domains of DNA hypomethylation mark a subset of promoters that retain accessibility during mitosis and across many cell types in interphase. Erythroid transcription factor GATA1 exerts site-specific changes in interphase accessibility that are most pronounced at distal regulatory elements, but has little influence on mitotic accessibility. We conclude that features of open chromatin are remarkably stable through mitosis, but are modulated at the level of individual genes and regulatory elements.


Asunto(s)
Ensamble y Desensamble de Cromatina , Cromosomas , Genoma , Mitosis/genética , Animales , Sitios de Unión , Ciclo Celular/genética , Diferenciación Celular/genética , Inmunoprecipitación de Cromatina , Biología Computacional , Metilación de ADN , Desoxirribonucleasa I/metabolismo , Células Eritroides/citología , Células Eritroides/metabolismo , Factor de Transcripción GATA1/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento , Interfase/genética , Ratones , Mitosis/efectos de los fármacos , Regiones Promotoras Genéticas , Unión Proteica , Secuencias Reguladoras de Ácidos Nucleicos , Factores de Transcripción/metabolismo , Transcripción Genética
11.
Cell ; 150(4): 725-37, 2012 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-22901805

RESUMEN

Tissue-specific transcription patterns are preserved throughout cell divisions to maintain lineage fidelity. We investigated whether transcription factor GATA1 plays a role in transmitting hematopoietic gene expression programs through mitosis when transcription is transiently silenced. Live-cell imaging revealed that a fraction of GATA1 is retained focally within mitotic chromatin. ChIP-seq of highly purified mitotic cells uncovered that key hematopoietic regulatory genes are occupied by GATA1 in mitosis. The GATA1 coregulators FOG1 and TAL1 dissociate from mitotic chromatin, suggesting that GATA1 functions as platform for their postmitotic recruitment. Mitotic GATA1 target genes tend to reactivate more rapidly upon entry into G1 than genes from which GATA1 dissociates. Mitosis-specific destruction of GATA1 delays reactivation selectively of genes that retain GATA1 during mitosis. These studies suggest a requirement of mitotic "bookmarking" by GATA1 for the faithful propagation of cell-type-specific transcription programs through cell division.


Asunto(s)
Células Eritroides/metabolismo , Factor de Transcripción GATA1/metabolismo , Hematopoyesis , Mitosis , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Línea Celular , Células Madre Embrionarias/metabolismo , Código de Histonas , Ratones , Proteínas Nucleares/metabolismo , Especificidad de Órganos , Proteínas Proto-Oncogénicas/metabolismo , Proteína 1 de la Leucemia Linfocítica T Aguda , Factores de Transcripción/metabolismo
12.
Mol Cell Biol ; 31(4): 662-73, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21135121

RESUMEN

The mobilization of nucleosomes by the ATP-dependent remodeler INO80 is quite different from another remodeler (SWI/SNF) that is also involved in gene activation. Unlike that recently shown for SWI/SNF, INO80 is unable to disassemble nucleosomes when remodeling short nucleosomal arrays. Instead, INO80 more closely resembles, although with notable exceptions, the nucleosome spacing activity of ISW2 and ISW1a, which are generally involved in transcription repression. INO80 required a minimum of 33 to 43 bp of extranucleosomal DNA for mobilizing nucleosomes, with 70 bp being optimal. INO80 prefers to move mononucleosomes to the center of DNA, like ISW2 and ISW1a, but does so with higher precision. Unlike ISW2/1a, INO80 does not require the H4 tail for nucleosome mobilization; instead, the H2A histone tail negatively regulates nucleosome movement by INO80. INO80 moved arrays of two or three nucleosomes with 50 or 79 bp of linker DNA closer together, with a final length of ∼30 bp of linker DNA or a repeat length of ∼177 bp. A minimum length of >30 bp of linker DNA was required for nucleosome movement and spacing by INO80 in arrays.


Asunto(s)
Ensamble y Desensamble de Cromatina , Nucleosomas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfato/metabolismo , ADN de Hongos/genética , ADN de Hongos/metabolismo , Histonas/química , Histonas/metabolismo , Nucleosomas/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...