RESUMEN
Creating a mouse model that recapitulates human tau pathology is essential for developing strategies to intervene in tau-induced neurodegeneration. However, mimicking the pathological features seen in human pathology often involves a trade-off with artificial effects such as unexpected gene insertion and neurotoxicity from the expression system. To overcome these issues, we developed the rTKhomo mouse model by combining a transgenic CaMKII-tTA system with a P301L mutated 1N4R human tau knock-in at the Rosa26 locus with a C57BL/6J background. This model closely mimics human tau pathology, particularly in the hippocampal CA1 region, showing age-dependent tau accumulation, neuronal loss and neuroinflammation. Notably, whole-brain 3D staining and light-sheet microscopy revealed a spatial gradient of tau deposition from the entorhinal cortex to the hippocampus, similar to the spatial distribution of Braak neurofibrillary tangle staging. Furthermore, [18F]PM-PBB3 positron emission tomography imaging enabled the quantification and live monitoring of tau deposition. The rTKhomo mouse model shows potential as a promising next-generation preclinical tool for exploring the mechanisms of tauopathy and for developing interventions targeting the spatial progression of tau pathology.
RESUMEN
We asked researchers from a range of disciplines across biology, engineering, and medicine to describe a current technological need. The goal is to provide a sample of the various technological gaps that exist and inspire future research projects.
RESUMEN
Electroencephalogram (EEG) and electromyogram (EMG) are fundamental tools in sleep research. However, investigations into the statistical properties of rodent EEG/EMG signals in the sleep-wake cycle have been limited. The lack of standard criteria in defining sleep stages forces researchers to rely on human expertise to inspect EEG/EMG. The recent increasing demand for analysing large-scale and long-term data has been overwhelming the capabilities of human experts. In this study, we explored the statistical features of EEG signals in the sleep-wake cycle. We found that the normalized EEG power density profile changes its lower and higher frequency powers to a comparable degree in the opposite direction, pivoting around 20-30 Hz between the NREM sleep and the active brain state. We also found that REM sleep has a normalized EEG power density profile that overlaps with wakefulness and a characteristic reduction in the EMG signal. Based on these observations, we proposed three simple statistical features that could span a 3D space. Each sleep-wake stage formed a separate cluster close to a normal distribution in the 3D space. Notably, the suggested features are a natural extension of the conventional definition, making it useful for experts to intuitively interpret the EEG/EMG signal alterations caused by genetic mutations or experimental treatments. In addition, we developed an unsupervised automatic staging algorithm based on these features. The developed algorithm is a valuable tool for expediting the quantitative evaluation of EEG/EMG signals so that researchers can utilize the recent high-throughput genetic or pharmacological methods for sleep research.
Asunto(s)
Electroencefalografía , Electromiografía , Fases del Sueño , Electromiografía/métodos , Electroencefalografía/métodos , Animales , Fases del Sueño/fisiología , Masculino , Ratones , Vigilia/fisiología , Ratones Endogámicos C57BL , Encéfalo/fisiologíaRESUMEN
The homeostatic regulation of sleep is characterized by rebound sleep after prolonged wakefulness, but the molecular and cellular mechanisms underlying this regulation are still unknown. In this study, we show that Ca2+/calmodulin-dependent protein kinase II (CaMKII)-dependent activity control of parvalbumin (PV)-expressing cortical neurons is involved in homeostatic regulation of sleep in male mice. Prolonged wakefulness enhances cortical PV-neuron activity. Chemogenetic suppression or activation of cortical PV neurons inhibits or induces rebound sleep, implying that rebound sleep is dependent on increased activity of cortical PV neurons. Furthermore, we discovered that CaMKII kinase activity boosts the activity of cortical PV neurons, and that kinase activity is important for homeostatic sleep rebound. Here, we propose that CaMKII-dependent PV-neuron activity represents negative feedback inhibition of cortical neural excitability, which serves as the distributive cortical circuits for sleep homeostatic regulation.
Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina , Corteza Cerebral , Homeostasis , Neuronas , Parvalbúminas , Sueño , Vigilia , Animales , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Parvalbúminas/metabolismo , Masculino , Sueño/fisiología , Neuronas/metabolismo , Neuronas/fisiología , Ratones , Vigilia/fisiología , Corteza Cerebral/metabolismo , Ratones Endogámicos C57BL , Ratones TransgénicosRESUMEN
Neurotransmitter receptors are essential components of synapses for communication between neurons in the brain. Because the spatiotemporal expression profiles and dynamics of neurotransmitter receptors involved in many functions are delicately governed in the brain, in vivo research tools with high spatiotemporal resolution for receptors in intact brains are highly desirable. Covalent labeling by chemical reaction (chemical labeling) of proteins without genetic manipulation is now a powerful method for analyzing receptors in vitro. However, selective target receptor labeling in the brain has not yet been achieved. This study shows that ligand-directed alkoxyacylimidazole (LDAI) chemistry can be used to selectively tether synthetic probes to target endogenous receptors in living mouse brains. The reactive LDAI reagents with negative charges were found to diffuse well over the whole brain and could selectively label target endogenous receptors, including AMPAR, NMDAR, mGlu1, and GABAAR. This simple and robust labeling protocol was then used for various applications: three-dimensional spatial mapping of endogenous receptors in the brains of healthy and disease-model mice; multi-color receptor imaging; and pulse-chase analysis of the receptor dynamics in postnatal mouse brains. Here, results demonstrated that bioorthogonal receptor modification in living animal brains may provide innovative molecular tools that contribute to the in-depth understanding of complicated brain functions.
Asunto(s)
Neuronas , Proteínas , Ratones , Animales , Indicadores y Reactivos , Ligandos , EncéfaloRESUMEN
Many mammalian proteins have circadian cycles of production and degradation, and many of these rhythms are altered posttranscriptionally. We used ribosome profiling to examine posttranscriptional control of circadian rhythms by quantifying RNA translation in the liver over a 24-h period from circadian-entrained mice transferred to constant darkness conditions and by comparing ribosome binding levels to protein levels for 16 circadian proteins. We observed large differences in ribosome binding levels compared to protein levels, and we observed delays between peak ribosome binding and peak protein abundance. We found extensive binding of ribosomes to upstream open reading frames (uORFs) in circadian mRNAs, including the core clock gene Period2 (Per2). An increase in the number of uORFs in the 5'UTR was associated with a decrease in ribosome binding in the main coding sequence and a reduction in expression of synthetic reporter constructs. Mutation of the Per2 uORF increased luciferase and fluorescence reporter expression in 3T3 cells and increased luciferase expression in PER2:LUC MEF cells. Mutation of the Per2 uORF in mice increased Per2 mRNA expression, enhanced ribosome binding on Per2, and reduced total sleep time compared to that in wild-type mice. These results suggest that uORFs affect mRNA posttranscriptionally, which can impact physiological rhythms and sleep.
Asunto(s)
Ritmo Circadiano , Perfilado de Ribosomas , Sueño , Animales , Ratones , Ritmo Circadiano/genética , Luciferasas/genética , Sistemas de Lectura Abierta/genética , ARN Mensajero/genética , Sueño/genética , Proteínas Circadianas Period/genéticaRESUMEN
Amyloidosis is triggered by the truncation of amyloid precursor proteins, causing organ damages. While previous studies found the truncation of amyloid A (AA) and amyloid transthyretin (ATTR) occurs in C- and N-terminal, respectively, the detailed mechanism of the fibril formation remains unclear. Liquid chromatography mass spectrometry is usually applied for a qualitative purpose, and thus quantification of tryptic peptide residue is difficult. We therefore employed a mass spectrometry-based quantification by isotope-labeled cell-free (MS-QBIC) to analyze the truncation processes in amyloid fibrillogenesis of AA and ATTR using the formalin-fixed paraffin-embedded tissues of autopsy cases. In this study, the process of transthyretin from an 'early fibril state' consisting of full-length ATTR to a 'mature ATTR amyloid fibril' with a truncated low-amyloidogenic segment has been mathematically revealed. The amount of full-length ATTR was nine times higher than in mature fibers. Large cohort studies using MS-QBIC may shed light on the clinical significance of amyloid fibrils.
RESUMEN
Pre-clinical models, postmortem and neuroimaging studies all support a role for muscarinic receptors in the molecular pathology of schizophrenia. From these data it was proposed that activation of the muscarinic M1 and/or M4 receptor would reduce the severity of the symptoms of schizophrenia. This hypothesis is now supported by results from two clinical trials which indicate that activating central muscarinic M1 and M4 receptors can reduce the severity of positive, negative and cognitive symptoms of the disorder. This review will provide an update on a growing body of evidence that argues the muscarinic M1 and M4 receptors have critical roles in CNS functions that are dysregulated by the pathophysiology of schizophrenia. This realization has been made possible, in part, by the growing ability to visualize and quantify muscarinic M1 and M4 receptors in the human CNS using molecular neuroimaging. We will discuss how these advances have provided evidence to support the notion that there is a sub-group of patients within the syndrome of schizophrenia that have a unique molecular pathology driven by a marked loss of muscarinic M1 receptors. This review is timely, as drugs targeting muscarinic receptors approach clinical use for the treatment of schizophrenia and here we outline the background biology that supported development of such drugs to treat the disorder.
RESUMEN
The endoplasmic reticulum (ER) is a major cell compartment where protein synthesis, folding, and posttranslational modifications occur with assistance from a wide variety of chaperones and enzymes. Quality control systems selectively eliminate abnormal proteins that accumulate inside the ER due to cellular stresses. ER-phagy, that is, selective autophagy of the ER, is a mechanism that maintains or reestablishes cellular and ER-specific homeostasis through removal of abnormal proteins. However, how ER luminal proteins are recognized by the ER-phagy machinery remains unclear. Here, we applied the aggregation-prone protein, six-repeated islet amyloid polypeptide (6xIAPP), as a model ER-phagy substrate and found that cell cycle progression 1 (CCPG1), which is an ER-phagy receptor, efficiently mediates its degradation via ER-phagy. We also identified prolyl 3-hydroxylase family member 4 (P3H4) as an endogenous cargo of CCPG1-dependent ER-phagy. The ER luminal region of CCPG1 contains several highly conserved regions that we refer to as cargo-interacting regions (CIRs); these interact directly with specific luminal cargos for ER-phagy. Notably, 6xIAPP and P3H4 interact directly with different CIRs. These findings indicate that CCPG1 is a bispecific ER-phagy receptor for ER luminal proteins and the autophagosomal membrane that contributes to the efficient removal of aberrant ER-resident proteins through ER-phagy.
Asunto(s)
Autofagia , Estrés del Retículo Endoplásmico , Proteínas Portadoras/metabolismo , Retículo Endoplásmico/metabolismo , Homeostasis , Proteínas/metabolismo , Proteínas de Ciclo Celular/metabolismoRESUMEN
The reduced sleep duration previously observed in Camk2b knockout mice revealed a role for Ca2+/calmodulin-dependent protein kinase II (CaMKII)ß as a sleep-promoting kinase. However, the underlying mechanism by which CaMKIIß supports sleep regulation is largely unknown. Here, we demonstrate that activation or inhibition of CaMKIIß can increase or decrease sleep duration in mice by almost 2-fold, supporting the role of CaMKIIß as a core sleep regulator in mammals. Importantly, we show that this sleep regulation depends on the kinase activity of CaMKIIß. A CaMKIIß mutant mimicking the constitutive-active (auto)phosphorylation state promotes the transition from awake state to sleep state, while mutants mimicking subsequent multisite (auto)phosphorylation states suppress the transition from sleep state to awake state. These results suggest that the phosphorylation states of CaMKIIß differently control sleep induction and maintenance processes, leading us to propose a "phosphorylation hypothesis of sleep" for the molecular control of sleep in mammals.
Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina , Calcio , Animales , Calcio/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Mamíferos/metabolismo , Ratones , Ratones Noqueados , Fosforilación , SueñoRESUMEN
The blood and lymphatic vasculature networks are not yet fully understood even in mouse because of the inherent limitations of imaging systems and quantification methods. This study aims to evaluate the usefulness of the tissue-clearing technology for visualizing blood and lymphatic vessels in adult mouse. Clear, unobstructed brain/body imaging cocktails and computational analysis (CUBIC) enables us to capture the high-resolution 3D images of organ- or area-specific vascular structures. To evaluate these 3D structural images, signals are first classified from the original captured images by machine learning at pixel base. Then, these classified target signals are subjected to topological data analysis and non-homogeneous Poisson process model to extract geometric features. Consequently, the structural difference of vasculatures is successfully evaluated in mouse disease models. In conclusion, this study demonstrates the utility of CUBIC for analysis of vascular structures and presents its feasibility as an analysis modality in combination with 3D images and mathematical frameworks.
Asunto(s)
Análisis de Datos , Vasos Linfáticos , Animales , Encéfalo/diagnóstico por imagen , Imagenología Tridimensional/métodos , Vasos Linfáticos/diagnóstico por imagen , Ratones , TecnologíaRESUMEN
The covalent conjugation of ubiquitin family proteins is a widespread post-translational protein modification. In the ubiquitin family, the ATG8 subfamily is exceptional because it is conjugated mainly to phospholipids. However, it remains unknown whether other ubiquitin family proteins are also conjugated to phospholipids. Here, we report that ubiquitin is conjugated to phospholipids, mainly phosphatidylethanolamine (PE), in yeast and mammalian cells. Ubiquitinated PE (Ub-PE) accumulates at endosomes and the vacuole (or lysosomes), and its level increases during starvation. Ub-PE is also found in baculoviruses. In yeast, PE ubiquitination is catalyzed by the canonical ubiquitin system enzymes Uba1 (E1), Ubc4/5 (E2), and Tul1 (E3) and is reversed by Doa4. Liposomes containing Ub-PE recruit the ESCRT components Vps27-Hse1 and Vps23 in vitro. Ubiquitin-like NEDD8 and ISG15 are also conjugated to phospholipids. These findings suggest that the conjugation to membrane phospholipids is not specific to ATG8 but is a general feature of the ubiquitin family.
Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Animales , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Liposomas/metabolismo , Mamíferos/metabolismo , Fosfatidiletanolaminas/metabolismo , Fosfolípidos/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitina/metabolismo , Enzimas Ubiquitina-Conjugadoras/genética , Enzimas Ubiquitina-Conjugadoras/metabolismo , UbiquitinaciónRESUMEN
BACKGROUND & AIMS: Tissue-clearing and three-dimensional (3D) imaging techniques aid clinical histopathological evaluation; however, further methodological developments are required before use in clinical practice. METHODS: We sought to develop a novel fluorescence staining method based on the classical periodic acid-Schiff stain. We further attempted to develop a 3D imaging system based on this staining method and evaluated whether the system can be used for quantitative 3D pathological evaluation and deep learning-based automatic diagnosis of inflammatory bowel diseases. RESULTS: We successfully developed a novel periodic acid-FAM hydrazide (PAFhy) staining method for 3D imaging when combined with a tissue-clearing technique (PAFhy-3D). This strategy enabled clear and detailed imaging of the 3D architectures of crypts in human colorectal mucosa. PAFhy-3D imaging also revealed abnormal architectural changes in crypts in ulcerative colitis tissues and identified the distributions of neutrophils in cryptitis and crypt abscesses. PAFhy-3D revealed novel pathological findings including spiral staircase-like crypts specific to inflammatory bowel diseases. Quantitative analysis of crypts based on 3D morphologic changes enabled differential diagnosis of ulcerative colitis, Crohn's disease, and non-inflammatory bowel disease; such discrimination could not be achieved by pathologists. Furthermore, a deep learning-based system using PAFhy-3D images was used to distinguish these diseases The accuracies were excellent (macro-average area under the curve = 0.94; F1 scores = 0.875 for ulcerative colitis, 0.717 for Crohn's disease, and 0.819 for non-inflammatory bowel disease). CONCLUSIONS: PAFhy staining and PAFhy-3D imaging are promising approaches for next-generation experimental and clinical histopathology.
Asunto(s)
Colitis Ulcerosa , Enfermedad de Crohn , Enfermedades Inflamatorias del Intestino , Colitis Ulcerosa/patología , Enfermedad de Crohn/diagnóstico por imagen , Enfermedad de Crohn/patología , Humanos , Hidrazinas , Imagenología Tridimensional , Enfermedades Inflamatorias del Intestino/diagnóstico , Enfermedades Inflamatorias del Intestino/patología , Ácido Peryódico , Polisacáridos , Coloración y EtiquetadoRESUMEN
Light-sheet microscopy has emerged as the preferred means for high-throughput volumetric imaging of cleared tissues. However, there is a need for a flexible system that can address imaging applications with varied requirements in terms of resolution, sample size, tissue-clearing protocol, and transparent sample-holder material. Here, we present a 'hybrid' system that combines a unique non-orthogonal dual-objective and conventional (orthogonal) open-top light-sheet (OTLS) architecture for versatile multi-scale volumetric imaging. We demonstrate efficient screening and targeted sub-micrometer imaging of sparse axons within an intact, cleared mouse brain. The same system enables high-throughput automated imaging of multiple specimens, as spotlighted by a quantitative multi-scale analysis of brain metastases. Compared with existing academic and commercial light-sheet microscopy systems, our hybrid OTLS system provides a unique combination of versatility and performance necessary to satisfy the diverse requirements of a growing number of cleared-tissue imaging applications.
Asunto(s)
Microscopía , Animales , Ratones , Microscopía/métodosRESUMEN
Selective autophagy cargos are recruited to autophagosomes primarily by interacting with autophagosomal ATG8 family proteins via the LC3-interacting region (LIR). The upstream sequence of most LIRs contains negatively charged residues such as Asp, Glu, and phosphorylated Ser and Thr. However, the significance of LIR phosphorylation (compared with having acidic amino acids) and the structural basis of phosphorylated LIR-ATG8 binding are not entirely understood. Here, we show that the serine residues upstream of the core LIR of the endoplasmic reticulum (ER)-phagy receptor TEX264 are phosphorylated by casein kinase 2, which is critical for its interaction with ATG8s, autophagosomal localization, and ER-phagy. Structural analysis shows that phosphorylation of these serine residues increases binding affinity by producing multiple hydrogen bonds with ATG8s that cannot be mimicked by acidic residues. This binding mode is different from those of other ER-phagy receptors that utilize a downstream helix, which is absent from TEX264, to increase affinity. These results suggest that phosphorylation of the LIR is critically important for strong LIR-ATG8 interactions, even in the absence of auxiliary interactions.
Asunto(s)
Quinasa de la Caseína II , Proteínas Asociadas a Microtúbulos , Autofagia , Familia de las Proteínas 8 Relacionadas con la Autofagia/química , Proteínas Portadoras/metabolismo , Quinasa de la Caseína II/metabolismo , Retículo Endoplásmico/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Fosforilación , Serina/metabolismoRESUMEN
SignificanceHuman sleep phenotypes are diversified by genetic and environmental factors, and a quantitative classification of sleep phenotypes would lead to the advancement of biomedical mechanisms underlying human sleep diversity. To achieve that, a pipeline of data analysis, including a state-of-the-art sleep/wake classification algorithm, the uniform manifold approximation and projection (UMAP) dimension reduction method, and the density-based spatial clustering of applications with noise (DBSCAN) clustering method, was applied to the 100,000-arm acceleration dataset. This revealed 16 clusters, including seven different insomnia-like phenotypes. This kind of quantitative pipeline of sleep analysis is expected to promote data-based diagnosis of sleep disorders and psychiatric disorders that tend to be complicated by sleep disorders.
Asunto(s)
Bancos de Muestras Biológicas , Trastornos del Sueño-Vigilia , Aceleración , Humanos , Fenotipo , Sueño , Reino UnidoRESUMEN
Neural oscillations are mainly regulated by molecular mechanisms and network connectivity of neurons. Large-scale simulations of neuronal networks have driven the population-level understanding of neural oscillations. However, cell-intrinsic mechanisms, especially a design principle, of neural oscillations remain largely elusive. Herein, we developed a minimal, Hodgkin-Huxley-type model of groups of neurons to investigate molecular mechanisms underlying spindle oscillation, which is synchronized oscillatory activity predominantly observed during mammalian sleep. We discovered that slowly inactivating potassium channels played an essential role in characterizing the firing pattern. The detailed analysis of the minimal model revealed that leak sodium and potassium channels, which controlled passive properties of the fast variable (i.e., membrane potential), competitively regulated the base value and time constant of the slow variable (i.e., cytosolic calcium concentration). Consequently, we propose a theoretical design principle of spindle oscillations that may explain intracellular mechanisms behind the flexible control over oscillation density and calcium setpoint.
RESUMEN
Arm acceleration data have been used to measure sleep-wake rhythmicity. Although several methods have been developed for the accurate classification of sleep-wake episodes, a method with both high sensitivity and specificity has not been fully established. In this study, we developed an algorithm, named ACceleration-based Classification and Estimation of Long-term sleep-wake cycles (ACCEL) that classifies sleep and wake episodes using only raw accelerometer data, without relying on device-specific functions. The algorithm uses a derivative of triaxial acceleration (jerk), which can reduce individual differences in the variability of acceleration data. Applying a machine learning algorithm to the jerk data achieved sleep-wake classification with a high sensitivity (>90%) and specificity (>80%). A jerk-based analysis also succeeded in recording periodic activities consistent with pulse waves. Therefore, the ACCEL algorithm will be a useful method for large-scale sleep measurement using simple accelerometers in real-world settings.