Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Front Immunol ; 14: 1170153, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37168862

RESUMEN

Introduction: Wound healing is a complex process to restore homeostasis after injury and insufficient skin wound healing is a considerable problem in medicine. Whereas many attempts of regenerative medicine have been made for wound healing with growth factors and cell therapies, simple pharmacological and immunological studies are lagging behind. We investigated how fibrin hydrogels modulate immune cells and molecules in skin wound healing in mice. Methods: Physiological fibrin hydrogels (3.5 mg/mL fibrinogen) were generated, biophysically analyzed for stiffness and protein contents and were structurally studied by scanning electron microscopy. Physiological fibrin hydrogels were applied to full thickness skin wounds and, after 3 days, cells and molecules in wound tissues were analyzed. Leukocytes, endothelial cells, fibroblasts and keratinocytes were explored with the use of Flow Cytometry, whereas cytokines and matrix metalloproteinases were analyzed with the use of qPCR, ELISAs and zymography. Skin wound healing was analyzed microscopically at day 3, macroscopically followed daily during repair in mice and compared with commercially available fibrin sealant Tisseel. Results: Exogenous fibrin at physiological concentrations decreased neutrophil and increased non-classical Ly6Clow monocyte and resolutive macrophage (CD206+ and CX3CR1+) populations, at day 3 after injury. Fibrin hydrogel reduced the expression of pro-inflammatory cytokines and increased IL-10 levels. In line with these findings, gelatinase B/MMP-9 was decreased, whereas gelatinase A/MMP-2 levels remained unaltered. Frequencies of dermal endothelial cells, fibroblasts and keratinocytes were increased and keratinocyte migration was enhanced by fibrin hydrogel. Importantly, physiological fibrin accelerated the healing of skin wounds in contrast to the highly concentrated fibrin sealant Tisseel, which delayed wound repair and possessed a higher fiber density. Conclusion: Collectively, we show that adding a tailored fibrin hydrogel scaffold to a wound bed positively influences the healing process, modulating leukocyte populations and inflammatory responses towards a faster wound repair.


Asunto(s)
Fibrina , Hidrogeles , Ratones , Animales , Hidrogeles/farmacología , Adhesivo de Tejido de Fibrina , Cicatrización de Heridas , Células Endoteliales , Citocinas
2.
J Inflamm Res ; 15: 4995-5008, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36065319

RESUMEN

Purpose: To verify the antibacterial and immunomodulatory effects of the amylose derivative - chlorite-oxidized oxyamylose (COAM) - in a skin wound setting. Methods: In vitro antibacterial effects of COAM against opportunistic bacterial pathogens common to skin wounds, including Staphylococcus aureus and methicillin-resistant Staphylococcus aureus (MRSA), were determined by cultivation methods. The effects of COAM on myeloid cell infiltration into full thickness skin wounds were investigated in wild-type and in transgenic CX3CR1-GFP mice. Results: On the basis of in vitro experiments, an antibacterial effect of COAM against Staphylococcus species including MRSA was confirmed. The minimum inhibitory concentration of COAM was determined as 2000 µg/mL against these bacterial strains. Control full thickness skin wounds yielded maximal neutrophil influxes and no additive effect on neutrophil influx was observed following topical COAM-treatment. However, COAM administration increased local CX3CR1 macrophage counts at days 3 and 4 and induced a trend towards better wound healing. Conclusion: Aside from its known broad antiviral impact, COAM possesses in vitro antibacterial effects specifically against Gram-positive opportunistic pathogens of the skin and modulates in vivo macrophage contents in mouse skin wounds.

3.
Front Immunol ; 12: 763832, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34912337

RESUMEN

Objectives: To explore posttranslational modifications (PTMs), including proteolytic activation, multimerization, complex formation and citrullination of gelatinases, in particular of gelatinase B/MMP-9, and to detect in gelatin-Sepharose affinity-purified synovial fluids, the presence of specific MMP proteoforms in relation to arthritis. Methods: Latent, activated, complexed and truncated gelatinase-A/MMP-2 and gelatinase B/MMP-9 proteoforms were detected with the use of zymography analysis to compare specific levels, with substrate conversion assays, to test net proteolytic activities and by Western blot analysis to decipher truncation variants. Citrullination was detected with enhanced sensitivity, by the use of a new monoclonal antibody against modified citrullines. Results: All MMP-9 and MMP-2 proteoforms were identified in archival synovial fluids with the use of zymography analysis and the levels of MMP-9 versus MMP-2 were studied in various arthritic diseases, including rheumatoid arthritis (RA). Secondly, we resolved misinterpretations of MMP-9 levels versus proteolytic activities. Thirdly, a citrullinated, truncated proteoform of MMP-9 was discovered in archival RA synovial fluid samples and its presence was corroborated as citrullinated hemopexin-less MMP-9 in a small prospective RA sample cohort. Conclusion: Synovial fluids from rheumatoid arthritis contain high levels of MMP-9, including its truncated and citrullinated proteoform. The combination of MMP-9 as analyte and its PTM by citrullination could be of clinical interest, especially in the field of arthritic diseases.


Asunto(s)
Artritis Reumatoide/metabolismo , Citrulinación , Metaloproteinasa 9 de la Matriz/metabolismo , Líquido Sinovial/metabolismo , Animales , Citrulina/análisis , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Procesamiento Proteico-Postraduccional
4.
Front Immunol ; 12: 701739, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34276694

RESUMEN

Interleukin 7 (IL-7) is a cell growth factor with a central role in normal T cell development, survival and differentiation. The lack of IL-7-IL-7 receptor(R)-mediated signaling compromises lymphoid development, whereas increased signaling activity contributes to the development of chronic inflammation, cancer and autoimmunity. Gain-of-function alterations of the IL-7R and the signaling through Janus kinases (JAKs) and signal transducers and activators of transcription (STATs) are enriched in T cell acute lymphoblastic leukemia (T-ALL) and autocrine production of IL-7 by T-ALL cells is involved in the phenotypes of leukemic initiation and oncogenic spreading. Several IL-7-associated pathologies are also characterized by increased presence of matrix metalloproteinase-9 (MMP-9), due to neutrophil degranulation and its regulated production by other cell types. Since proteases secreted by neutrophils are known to modulate the activity of many cytokines, we investigated the interactions between IL-7, MMP-9 and several other neutrophil-derived proteases. We demonstrated that MMP-9 efficiently cleaved human IL-7 in the exposed loop between the α-helices C and D and that this process is delayed by IL-7 N-linked glycosylation. Functionally, the proteolytic cleavage of IL-7 did not influence IL-7Rα binding and internalization nor the direct pro-proliferative effects of IL-7 on a T-ALL cell line (HPB-ALL) or in primary CD8+ human peripheral blood mononuclear cells. A comparable effect was observed for the neutrophil serine proteases neutrophil elastase, proteinase 3 and combinations of neutrophil proteases. Hence, glycosylation and disulfide bonding as two posttranslational modifications influence IL-7 bioavailability in the human species: glycosylation protects against proteolysis, whereas internal cysteine bridging under physiological redox state keeps the IL-7 conformations as active proteoforms. Finally, we showed that mouse IL-7 does not contain the protease-sensitive loop and, consequently, was not cleaved by MMP-9. With the latter finding we discovered differences in IL-7 biology between the human and mouse species.


Asunto(s)
Interleucina-7/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Neutrófilos/metabolismo , Serina Proteasas/metabolismo , Línea Celular , Línea Celular Tumoral , Citocinas/metabolismo , Glicosilación , Humanos , Inflamación/metabolismo , Leucocitos Mononucleares/metabolismo , Activación Neutrófila/fisiología , Proteolisis
5.
Matrix Biol ; 95: 68-83, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33157227

RESUMEN

Matrix metalloproteinases (MMPs) are enzymes with critical roles in biology and pathology. Glycosylation, nitrosylation and proteolysis are known posttranslational modifications (PTMs) regulating intrinsically the activities of MMPs. We discovered MMP citrullination by peptidyl arginine deiminases (PADs) as a new PTM. Upon hypercitrullination, MMP-9 acquired a higher affinity for gelatin than control MMP-9. Furthermore, hypercitrullinated proMMP-9 was more efficiently activated by MMP-3 compared to control MMP-9. JNJ0966, a specific therapeutic inhibitor of MMP-9 activation, inhibited the activation of hypercitrullinated proMMP-9 by MMP-3 significantly less in comparison with control proMMP-9. The presence of citrullinated/homocitrullinated MMP-9 was detected in vivo in neutrophil-rich sputum samples of cystic fibrosis patients. In addition to citrullination of MMP-9, we report efficient citrullination of MMP-1 and lower citrullination levels of MMP-3 and MMP-13 by PAD2 in vitro. In conclusion, citrullination of MMPs is a new PTM worthy of additional biochemical and biological studies.


Asunto(s)
Citrulinación/genética , Fibrosis Quística/sangre , Metaloproteinasa 3 de la Matriz/genética , Metaloproteinasa 9 de la Matriz/genética , Arginina Deiminasa Proteína-Tipo 2/genética , Fibrosis Quística/genética , Fibrosis Quística/patología , Activación Enzimática/genética , Femenino , Humanos , Hidrolasas/genética , Masculino , Metaloproteinasa 13 de la Matriz/sangre , Metaloproteinasa 13 de la Matriz/genética , Metaloproteinasa 3 de la Matriz/sangre , Metaloproteinasa 9 de la Matriz/sangre , Metaloproteinasas de la Matriz/genética , Procesamiento Proteico-Postraduccional/genética , Arginina Deiminasa Proteína-Tipo 2/sangre , Esputo/metabolismo
6.
Cells ; 9(7)2020 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-32645949

RESUMEN

A fundamental part of the immune response to infection or injury is leukocyte migration. Matrix metalloproteinases (MMPs) are a class of secreted or cell-bound endopeptidases, implicated in every step of the process of inflammatory cell migration. Hence, specific inhibition of MMPs is an interesting approach to control inflammation. We evaluated the potential of a bivalent carboxylate inhibitor to selectively inhibit the trimeric proteoform of MMP-9 and compared this with a corresponding monovalent inhibitor. The bivalent inhibitor efficiently inhibited trimeric MMP-9 (IC50 = 0.1 nM), with at least 500-fold selectivity for MMP-9 trimers over monomers. Surprisingly, in a mouse model for chemotaxis, the bivalent inhibitor amplified leukocyte influxes towards lipopolysaccharide-induced inflammation. We verified by microscopic and flow cytometry analysis increased amounts of neutrophils. In a mouse model for endotoxin shock, mice treated with the bivalent inhibitor had significantly increased levels of MMP-9 in plasma and lungs, indicative for increased inflammation. In conclusion, we propose a new role for MMP-9 trimers in tempering excessive neutrophil migration. In addition, we have identified a small molecule inhibitor with a high selectivity for the trimeric proteoform of MMP-9, which will allow further research on the functions of MMP-9 proteoforms.


Asunto(s)
Endotoxemia/inmunología , Endotoxemia/metabolismo , Inflamación/inmunología , Inflamación/metabolismo , Metaloproteinasa 9 de la Matriz/química , Metaloproteinasa 9 de la Matriz/metabolismo , Animales , Movimiento Celular/fisiología , Quimiotaxis/fisiología , Modelos Animales de Enfermedad , Citometría de Flujo , Humanos , Leucocitosis/inmunología , Leucocitosis/metabolismo , Ratones , Ratones Endogámicos C57BL , Neutrófilos/inmunología , Neutrófilos/metabolismo , Sepsis/inmunología , Sepsis/metabolismo
7.
Pharmaceutics ; 12(5)2020 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-32414218

RESUMEN

Bacterial inclusion bodies (IBs) are protein-based nanoparticles of a few hundred nanometers formed during recombinant protein production processes in different bacterial hosts. IBs contain active protein in a mechanically stable nanostructured format that has been broadly characterized, showing promising potential in different fields such as tissue engineering, protein replacement therapies, cancer, and biotechnology. For immunomodulatory purposes, however, the interference of the format immunogenic properties-intrinsic to IBs-with the specific effects of the therapeutic protein is still an uncovered gap. For that, active and inactive forms of the catalytic domain of a matrix metalloproteinase-9 (MMP-9 and mutMMP-9, respectively) have been produced as IBs and compared with the soluble form for dermal inflammatory effects in mmp9 knock-out mice. After protein injections in air-pouches in the mouse model, MMP-9 IBs induce local neutrophil recruitment and increase pro-inflammatory chemokine levels, lasting for at least two days, whereas the effects triggered by the soluble MMP-9 format fade out after 3 h. Interestingly, the IB intrinsic effects (mutMMP-9 IBs) do not last more than 24 h. Therefore, it may be concluded that IBs could be used for the delivery of therapeutic proteins, such as immunomodulating proteins while preserving their stability in the specific tissue and without triggering important unspecific inflammatory responses due to the protein format.

8.
Crit Rev Biochem Mol Biol ; 55(2): 111-165, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32290726

RESUMEN

Proteases are a diverse group of hydrolytic enzymes, ranging from single-domain catalytic molecules to sophisticated multi-functional macromolecules. Human proteases are divided into five mechanistic classes: aspartate, cysteine, metallo, serine and threonine proteases, based on the catalytic mechanism of hydrolysis. As a protective mechanism against uncontrolled proteolysis, proteases are often produced and secreted as inactive precursors, called zymogens, containing inhibitory N-terminal propeptides. Protease propeptide structures vary considerably in length, ranging from dipeptides and propeptides of about 10 amino acids to complex multifunctional prodomains with hundreds of residues. Interestingly, sequence analysis of the different protease domains has demonstrated that propeptide sequences present higher heterogeneity compared with their catalytic domains. Therefore, we suggest that protease inhibition targeting propeptides might be more specific and have less off-target effects than classical inhibitors. The roles of propeptides, besides keeping protease latency, include correct folding of proteases, compartmentalization, liganding, and functional modulation. Changes in the propeptide sequence, thus, have a tremendous impact on the cognate enzymes. Small modifications of the propeptide sequences modulate the activity of the enzymes, which may be useful as a therapeutic strategy. This review provides an overview of known human proteases, with a focus on the role of their propeptides. We review propeptide functions, activation mechanisms, and possible therapeutic applications.


Asunto(s)
Precursores Enzimáticos/química , Precursores Enzimáticos/metabolismo , Péptido Hidrolasas/química , Péptido Hidrolasas/metabolismo , Secuencia de Aminoácidos , Biomarcadores/química , Biomarcadores/metabolismo , Dominio Catalítico , Activación Enzimática , Precursores Enzimáticos/clasificación , Precursores Enzimáticos/genética , Humanos , Mutación , Péptido Hidrolasas/clasificación , Péptido Hidrolasas/genética , Pliegue de Proteína , Multimerización de Proteína , Proteolisis
9.
Pharmaceutics ; 12(2)2020 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-32075316

RESUMEN

Inclusion bodies (IBs) are protein nanoclusters obtained during recombinant protein production processes, and several studies have demonstrated their potential as biomaterials for therapeutic protein delivery. Nevertheless, IBs have been, so far, exclusively sifted by their biological activity in vitro to be considered in further protein-based treatments in vivo. Matrix metalloproteinase-9 (MMP-9) protein, which has an important role facilitating the migration of immune cells, was used as model protein. The MMP-9 IBs were compared with their soluble counterpart and with MMP-9 encapsulated in polymeric-based micelles (PM) through ionic and covalent binding. The soluble MMP-9 and the MMP-9-ionic PM showed the highest activity values in vitro. IBs showed the lowest activity values in vitro, but the specific activity evolution in 50% bovine serum at room temperature proved that they were the most stable format. The data obtained with the use of an air-pouch mouse model showed that MMP-9 IBs presented the highest in vivo activity compared to the soluble MMP-9, which was associated only to a low and a transitory peak of activity. These results demonstrated that the in vivo performance is the addition of many parameters that did not always correlate with the in vitro behavior of the protein of interest, becoming especially relevant at evaluating the potential of IBs as a protein-based nanomaterial for therapeutic purposes.

10.
Cell Mol Life Sci ; 77(15): 3013-3026, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31642940

RESUMEN

Proteolysis is a crucial process in life, tightly controlled by numerous natural protease inhibitors. In human blood, alpha-2-macroglobulin is an emergency protease inhibitor preventing coagulation and damage to endothelia and leukocytes. With the use of a unique protease trapping mechanism, alpha-2-macroglobulin lures active proteases into its snap-trap, shields these from potential substrates and 'flags' their complex for elimination by receptor-mediated endocytosis. Matrix metalloprotease-9/gelatinase B is a secreted protease increased in blood of patients with inflammations, vascular disorders and cancers. Matrix metalloprotease-9 occurs as monomers and stable homotrimers, but the reason for their co-existence remains obscure. We discovered that matrix metalloprotease-9 homotrimers undergo reduced anti-proteolytic regulation by alpha-2-macroglobulin and are able to travel as a proteolytically active hitchhiker on alpha-2-macroglobulin. As a comparison, we revealed that monomeric active matrix metalloprotease-9 is efficiently trapped by human plasma alpha-2-macroglobulin and this masks the detection of activated matrix metalloprotease-9 with standard analysis techniques. In addition, we show that alpha-2-macroglobulin/trimer complexes escape clearance through the receptor low-density lipoprotein receptor-related protein 1, also known as the alpha-2-macroglobulin receptor. Thus, the biochemistry and biology of matrix metalloprotease-9 monomers and trimers are completely different as multimerization enables active matrix metalloprotease-9 to partially avoid alpha-2-macroglobulin regulation both by direct protease inhibition and by removal from the extracellular space by receptor-mediated endocytosis. Finally, for the biomarker field, the analysis of alpha-2-macroglobulin/protease complexes with upgraded technology is advocated as a quotum for protease activation in human plasma samples.


Asunto(s)
Proteína 1 Relacionada con Receptor de Lipoproteína de Baja Densidad/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , alfa 2-Macroglobulinas Asociadas al Embarazo/metabolismo , Línea Celular Tumoral , Endocitosis , Humanos , Metaloproteinasa 9 de la Matriz/química , Metaloproteinasa 9 de la Matriz/genética , Mutagénesis Sitio-Dirigida , Unión Proteica , Multimerización de Proteína , Proteolisis
11.
Biochem Biophys Res Commun ; 520(1): 198-204, 2019 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-31585732

RESUMEN

Increased angiogenesis is commonly observed in chronic lymphocytic leukemia (CLL) tissues in correlation with advanced disease. CLL cells express pro- and anti-angiogenic genes and acquire a pro-angiogenic pattern upon interaction with the microenvironment. Because MMP-9 (a microenvironment component) plays important roles in solid tumor angiogenesis, we have studied whether MMP-9 influenced the angiogenic pattern in CLL cells. Immunofluorescence analyses confirmed the presence of MMP-9 in CLL tissues. MMP-9 interaction with CLL cells increased their MMP-9 expression and secretion into the medium. Accordingly, the conditioned media of MMP-9-primed CLL cells significantly enhanced endothelial cell proliferation, compared to control cells. MMP-9 also increased VEGF and decreased TSP-1 and Ang-2 expression, all at the gene and protein level, inducing a pro-angiogenic pattern in CLL cells. Mechanistic analyses demonstrated that downregulation of the selected gene TSP-1 by MMP-9 involved α4ß1 integrin, Src kinase family activity and the STAT3 transcription factor. Regulation of angiogenic genes is a novel contribution of MMP-9 to CLL pathology.


Asunto(s)
Angiopoyetina 2/metabolismo , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Leucemia Linfocítica Crónica de Células B/enzimología , Metaloproteinasa 9 de la Matriz/metabolismo , Neovascularización Patológica , Factor de Transcripción STAT3/metabolismo , Anciano , Proliferación Celular , Medios de Cultivo Condicionados , Células Endoteliales/metabolismo , Femenino , Regulación Enzimológica de la Expresión Génica , Regulación Leucémica de la Expresión Génica , Células Endoteliales de la Vena Umbilical Humana , Humanos , Integrina alfa4beta1/metabolismo , Masculino , Persona de Mediana Edad
13.
Biochem J ; 476(15): 2191-2208, 2019 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-31262730

RESUMEN

Interleukin 2 (IL-2) is critical for T cell development and homeostasis, being a key regulator of adaptive immune responses in autoimmunity, hypersensitivity reactions and cancer. Therefore, its abundance in serum and peripheral tissues needs tight control. Here, we described a new mechanism contributing to the immunobiology of IL-2. We demonstrated, both in biochemical and cell-based assays, that IL-2 is subject to proteolytic processing by neutrophil matrix metalloproteinase-9 (MMP-9). IL-2 fragments produced after cleavage by MMP-9 remained linked by a disulfide bond and displayed a reduced affinity for all IL-2 receptor subunits and a distinct pattern and timing of signal transduction. Stimulation of IL-2-dependent cells, including murine CTLL-2 and primary human regulatory T cells, with cleaved IL-2 resulted in significantly decreased proliferation. The concerted action of neutrophil proteases destroyed IL-2. Our data suggest that in neutrophil-rich inflammatory conditions in vivo, neutrophil MMP-9 may reduce the abundance of signaling-competent IL-2 and generate a fragment that competes with IL-2 for receptor binding, whereas the combined activity of granulocyte proteases has the potential to degrade and thus eliminate bioavailable IL-2.


Asunto(s)
Interleucina-2/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Neutrófilos/enzimología , Transducción de Señal , Linfocitos T Reguladores/inmunología , Animales , Línea Celular , Humanos , Interleucina-2/genética , Metaloproteinasa 9 de la Matriz/genética , Ratones
14.
Front Immunol ; 10: 538, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30967870

RESUMEN

Systemic Lupus Erythematosus (SLE) is a common and devastating autoimmune disease, characterized by a dysregulated adaptive immune response against intracellular antigens, which involves both autoreactive T and B cells. In SLE, mainly intracellular autoantigens generate autoantibodies and these assemble into immune complexes and activate the classical pathway of the complement system enhancing inflammation. Matrix metalloproteinase-9 (MMP-9) levels have been investigated in the serum of SLE patients and in control subjects. On the basis of specific studies, it has been suggested to treat SLE patients with MMP inhibitors. However, some of these inhibitors induce SLE. Analysis of LPR-/-MMP-9-/- double knockout mice suggested that MMP-9 plays a protective role in autoantigen clearance in SLE, but the effects of MMP-9 on immune complexes remained elusive. Therefore, we studied the role of MMP-9 in the clearance of autoantigens, autoantibodies and immune complexes and demonstrated that the lack of MMP-9 increased the levels of immune complexes in plasma and local complement activation in spleen and kidney in the LPR-/- mouse model of SLE. In addition, we showed that MMP-9 dissolved immune complexes from plasma of lupus-prone LPR-/-/MMP-9-/- mice and from blood samples of SLE patients. Surprisingly, autoantigens incorporated into immune complexes, but not immunoglobulin heavy or light chains, were cleaved by MMP-9. We discovered Apolipoprotein-B 100 as a new substrate of MMP-9 by analyzing the degradation of immune complexes from human plasma samples. These data are relevant to understand lupus immunopathology and side-effects observed with the use of known drugs. Moreover, we caution against the use of MMP inhibitors for the treatment of SLE.


Asunto(s)
Linfocitos B/inmunología , Lupus Eritematoso Sistémico/inmunología , Metaloproteinasa 9 de la Matriz/inmunología , Proteolisis , Linfocitos T/inmunología , Animales , Apolipoproteína B-100/genética , Apolipoproteína B-100/inmunología , Linfocitos B/patología , Modelos Animales de Enfermedad , Humanos , Lupus Eritematoso Sistémico/genética , Lupus Eritematoso Sistémico/patología , Metaloproteinasa 9 de la Matriz/genética , Ratones , Ratones Noqueados , Linfocitos T/patología
15.
Oncogene ; 38(23): 4605-4619, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30760844

RESUMEN

We previously showed that MMP-9 contributes to CLL pathology by regulating cell survival and migration and that, when present at high levels, MMP-9 induces cell arrest. To further explore the latter function, we studied whether MMP-9 influences the gene-expression profile in CLL. Microarray analyses rendered 131 differentially expressed genes in MEC-1 cells stably transfected with MMP-9 (MMP-9-cells) versus cells transfected with empty vector (Mock-cells). Ten out of twelve selected genes were also differentially expressed in MEC-1 cells expressing the catalytically inactive MMP-9MutE mutant (MMP-9MutE-cells). Incubation of primary CLL cells with MMP-9 or MMP-9MutE also regulated gene and protein expression, including CD99, CD226, CD52, and CD274. Because CD99 is involved in leukocyte transendothelial migration, we selected CD99 for functional and mechanistic studies. The link between MMP-9 and CD99 was reinforced with MMP-9 gene silencing studies, which resulted in CD99 upregulation. CD99 gene silencing significantly reduced CLL cell adhesion, chemotaxis and transendothelial migration, while CD99 overexpression increased cell migration. Mechanistic analyses indicated that MMP-9 downregulated CD99 via binding to α4ß1 integrin and subsequent inactivation of the Sp1 transcription factor. This MMP-9-induced mechanism is active in CLL lymphoid tissues, since CD99 expression and Sp1 phosphorylation was lower in bone marrow-derived CLL cells than in their peripheral blood counterparts. Our study establishes a new gene regulatory function for MMP-9 in CLL. It also identifies CD99 as an MMP-9 target and a novel contributor to CLL cell adhesion, migration and arrest. CD99 thus constitutes a new therapeutic target in CLL, complementary to MMP-9.


Asunto(s)
Antígeno 12E7/metabolismo , Puntos de Control del Ciclo Celular , Movimiento Celular , Leucemia Linfocítica Crónica de Células B/genética , Leucemia Linfocítica Crónica de Células B/metabolismo , Metaloproteinasa 9 de la Matriz/fisiología , Antígeno 12E7/genética , Catálisis , Adhesión Celular/genética , Puntos de Control del Ciclo Celular/genética , Movimiento Celular/genética , Células Cultivadas , Progresión de la Enfermedad , Regulación Leucémica de la Expresión Génica , Células Endoteliales de la Vena Umbilical Humana , Humanos , Leucemia Linfocítica Crónica de Células B/patología , Unión Proteica , Migración Transendotelial y Transepitelial/genética
16.
FEBS J ; 286(5): 930-945, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30422384

RESUMEN

Matrix metalloproteinases (MMPs) are secreted as proenzymes, containing propeptides that interact with the catalytic zinc, thereby controlling MMP activation. The MMP-9 propeptide is unique in the MMP family because of its post-translational modification with an N-linked oligosaccharide. ProMMP-9 activation by MMP-3 occurs stepwise by cleavage of the propeptide in an aminoterminal (pro-AT) and carboxyterminal (pro-CT) peptide. We chemically synthesized aglycosyl pro-AT and pro-CT and purified recombinant glycosylated pro-ATSf-9 . First, we report new cleavage sites in the MMP-9 propeptide by MMP-3 and neutrophil elastase. Additionally, we demonstrated with the use of western blot analysis a higher resistance of glycosylated versus aglycosyl pro-AT against proteolysis by MMP-3, MMP-9, meprin α, neutrophil elastase and by protease-rich synovial fluids from rheumatoid arthritis patients. Moreover, we investigated the effect of glycosylation on proteolytic activation of human proMMP-9 with the use of zymography and dye-quenched gelatin cleavage analysis. Compared to recombinant Sf-9 proMMP-9 glycoforms, larger oligosaccharides of human neutrophil proMMP-9 increased resistance against proteolytic activation. Additionally, proMMP-9 from Congenital Disorder of Glycosylation patients, compared to healthy controls, showed a higher activation rate by MMP-3. Finally, we demonstrated that glycan-galectin-3 interactions reduced proMMP-9 activation. In conclusion, modification of MMP-9 propeptide glycosylation is a fine-tuning mechanism and co-determines the specific activity of MMP-9 in physiology and pathology. ENZYMES: MMP-9 EC 3.4.24.35, MMP-3 EC 3.4.24.17, meprin α EC 3.4.24.18, neutrophil elastase EC 3.4.21.37, trypsin EC 3.4.21.4 and PNGase F EC 3.5.1.52.


Asunto(s)
Precursores Enzimáticos/metabolismo , Galectina 3/metabolismo , Gelatinasas/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Secuencia de Aminoácidos , Proteínas Sanguíneas , Estudios de Casos y Controles , Trastornos Congénitos de Glicosilación/metabolismo , Activación Enzimática , Galectinas , Glicosilación , Humanos , Elastasa de Leucocito/metabolismo , Metaloproteinasa 3 de la Matriz/metabolismo , Proteolisis
17.
J Cell Mol Med ; 23(1): 576-585, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30358100

RESUMEN

Gelatin zymography analysis is a sensitive method and commonly used to characterize and quantify the presence of the gelatinases (MMP-2 and MMP-9) in biological samples. In human plasma samples from healthy controls and systemic lupus erythematosus (SLE) patients, we observed a gelatinolytic molecule at 80 kDa, suggestive for activated human MMP-9. However, by developing and using the EDTA/gelatin zymography method and after purification of the 80 kDa entity, we proved that this molecule was the C1s subunit of the complement system. The zymolytic capacity of C1s was validated and found to be enhanced, in the absence of calcium and in the presence of EDTA. Our findings indicate that for correct identification of gelatinolytic proteins in complex biological samples the use of EDTA/gelatin zymography for enzyme development is advised. In addition, by quantification of EDTA/gelatin zymography analysis and ELISA, we observed that the levels of C1s were higher in plasma and immune complexes of SLE patients than of healthy individuals. Therefore, our data imply that C1s may become a marker for the diagnosis of SLE.


Asunto(s)
Complejo Antígeno-Anticuerpo/inmunología , Ácido Edético/química , Gelatina/química , Lupus Eritematoso Sistémico/sangre , Lupus Eritematoso Sistémico/inmunología , Metaloproteinasa 9 de la Matriz/sangre , Adolescente , Adulto , Anciano , Ensayo de Inmunoadsorción Enzimática/métodos , Femenino , Gelatinasas/metabolismo , Humanos , Lupus Eritematoso Sistémico/metabolismo , Masculino , Metaloproteinasa 2 de la Matriz/sangre , Persona de Mediana Edad , Adulto Joven
18.
Clin Transl Gastroenterol ; 9(11): 208, 2018 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-30449890

RESUMEN

OBJECTIVES: Achalasia is a primary esophageal motility disorder resulting from selective loss of inhibitory neurons in the esophageal myenteric plexus, likely due to an autoimmune response with involvement of the adaptive immune system. Innate immune processes of the host constitute the bridge between environmental etiological factors and the adaptive immune system. Although these remain poorly investigated, they might be of diagnostic and therapeutic relevance. In view of the role of extracellular proteolysis in organ-specific autoimmunity, we studied gelatinases of the matrix metalloproteinase (MMP) family in achalasia patients. METHODS: The presence of MMP-2 and MMP-9 proteoforms was analyzed in sera of two cohorts of achalasia patients. Additionally, with the use of immunohistopathological analysis, in situ MMP-2 and MMP-9 expression was investigated. Finally, we tested the paradigm of remnant epitopes generating autoimmunity (REGA) for achalasia-associated autoantigens by evaluating whether autoantigenic proteins are cleaved by MMP-9 into remnant epitopes. RESULTS: We showed significantly increased ratios of MMP-9/MMP-2 and activated MMP-9/proMMP-9 in sera of achalasia patients (n = 88) versus controls (n = 60). MMP-9-positive and MMP-2-positive cells were more abundant in achalasia (n = 49) versus control biopsies from transplant donors (n = 10). Furthermore, extensive damage within the plexus was found in the tissues with more MMP-9-positive cells. Additionally, we documented achalasia-associated autoantigens PNMA2, Ri, GAD65, and VIP as novel MMP-9 substrates. CONCLUSIONS: We provide new biomarkers and insights into innate immune mechanisms in the autoimmune pathology of achalasia. Our results imply that extracellular protease inhibition is worthwhile to test as therapeutic intervention in achalasia.


Asunto(s)
Autoinmunidad , Acalasia del Esófago/inmunología , Inmunidad Innata , Metaloproteinasa 9 de la Matriz/sangre , Adolescente , Adulto , Anciano , Autoantígenos/sangre , Biomarcadores/sangre , Biopsia , Acalasia del Esófago/clasificación , Femenino , Humanos , Inmunohistoquímica , Masculino , Metaloproteinasa 2 de la Matriz/sangre , Persona de Mediana Edad , Adulto Joven
19.
PLoS One ; 13(10): e0197944, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30273366

RESUMEN

Gelatinase B/matrix metalloproteinase-9 (MMP-9) triggers multiple sclerosis (MS) and the animal model of experimental autoimmune encephalomyelitis (EAE) by the breakdown of the blood-brain barrier. Interestingly, MMP-9 is beneficial in systemic autoimmunity caused by Fas-deficiency. Fas-deficient (faslpr) and Fas-ligand-deficient mice are protected against EAE. We here investigated the interaction between Fas and MMP-9 in the setting of induction of EAE and compared short- and long-term effects. We provoked EAE with myelin oligodendrocyte glycoprotein (MOG) peptide and compared EAE development in four genotypes (wild-type (WT), single knockout mmp-9-/-, faslpr, and mmp-9-/-/faslpr) and monitored leukocytes, cytokines and chemokines as immunological parameters. As expected, faslpr mice were resistant against EAE induction, whereas MMP-9 single knockout mice were not. In the double mmp-9-/-/ faslpr mice the effects on disease scores pointed to independent rather than interrelated disease mechanisms. On a short term, after EAE induction leukocytes infiltrated into the brain and cytokine and chemokine levels were significantly higher in all the four genotypes studied, even in the faslpr and mmp-9-/-/faslpr, which did not develop clinical disease. The levels of MMP-9 but not of MMP-2 were increased in the brain and in the peripheral organs after EAE induction. After 40 days all the animals recovered and did not show signs of EAE. However, the absence of MMP-9 in the remission phase suggested a protective role of MMP-9 in the late phase of the disease, because single mmp-9-/- mice presented a delayed remission in comparison with WT animals suggesting a phase-dependent role of MMP-9 in the disease. Nevertheless, the levels of some cytokines and chemokines remained higher than in control animals even 100 days after EAE induction, attesting to a prolonged state of immune activation. We thus yielded new insights and useful markers to monitor this activated immune status. Furthermore, MMP-9 but not MMP-2 levels remained increased in the brains and, to a higher extend, in the spleens of the WT mice even during the remission phase, which is in line with the role of MMP-9 as a useful marker and a protective factor for EAE in the remission phase.


Asunto(s)
Encefalomielitis Autoinmune Experimental/inmunología , Metaloproteinasa 9 de la Matriz/inmunología , Receptor fas/inmunología , Animales , Autoinmunidad , Citocinas/inmunología , Modelos Animales de Enfermedad , Encefalomielitis Autoinmune Experimental/genética , Encefalomielitis Autoinmune Experimental/patología , Femenino , Eliminación de Gen , Masculino , Metaloproteinasa 9 de la Matriz/genética , Ratones Endogámicos C57BL , Ratones Noqueados , Esclerosis Múltiple/genética , Esclerosis Múltiple/inmunología , Esclerosis Múltiple/patología , Receptor fas/genética
20.
Front Immunol ; 9: 1154, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29892293

RESUMEN

Antileukoproteinase or secretory leukocyte peptidase inhibitor is a small protein which protects the mucosal linings against excessive proteolysis, inflammation, and microbial infection. We discovered that gelatinase B or matrix metalloproteinase (MMP)-9, a secreted zinc-dependent endopeptidase typically found at sites of inflammation, destroys antileukoproteinase by cleavages within both of its two functional domains: the anti-microbial N-terminal and the anti-proteolytic C-terminal domains. Cleaved antileukoproteinase possessed a significantly lower ability to bind lipopolysaccharides (LPS) and a reduced capacity to inhibit neutrophil elastase (NE) activity. Whereas intact antileukoproteinase repressed proinflammatory transcript [prostaglandin-endoperoxide synthase 2 (PTGS2) and IL6] synthesis and protein secretion [e.g., of MMP-9] in human CD14+ blood monocytes stimulated with LPS, this effect was reduced or lost for cleaved antileukoproteinase. We demonstrated the in vivo presence of antileukoproteinase cleavage fragments in lower airway secretions of non-cystic fibrosis bronchiectasis patients with considerable levels of neutrophils and, hence, elastase and MMP-9 activity. As a comparison, other MMPs (MMP-2, MMP-7, and MMP-8) and serine proteases (NE, cathepsin G, and proteinase 3) were also able to cleave antileukoproteinase with similar or reduced efficiency. In conclusion, in specific mucosal pathologies, such as bronchiectasis, neutrophils, and macrophage subsets control local immune reactions by proteolytic regulation, here described as the balance between MMPs (in particular MMP-9), serine proteases and local tissue inhibitors.


Asunto(s)
Bronquiectasia/inmunología , Inmunidad Mucosa , Activación de Macrófagos , Macrófagos/inmunología , Neutrófilos/inmunología , Proteolisis , Inhibidor Secretorio de Peptidasas Leucocitarias/inmunología , Bronquiectasia/patología , Femenino , Humanos , Elastasa de Leucocito/inmunología , Lipopolisacáridos/toxicidad , Masculino , Metaloproteinasa 9 de la Matriz/inmunología , Neutrófilos/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA